Loading…
Towards heavy-mass ab initio nuclear structure: Open-shell Ca, Ni and Sn isotopes from Bogoliubov coupled-cluster theory
Recent developments in nuclear many-body theory enabled the description of open-shell medium-mass nuclei from first principles by exploiting the spontaneous breaking of symmetries within correlation expansion methods. Once combined with systematically improvable inter-nucleon interactions consistent...
Saved in:
Published in: | Physics letters. B 2024-04, Vol.851, p.138571, Article 138571 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent developments in nuclear many-body theory enabled the description of open-shell medium-mass nuclei from first principles by exploiting the spontaneous breaking of symmetries within correlation expansion methods. Once combined with systematically improvable inter-nucleon interactions consistently derived from chiral effective field theory, modern ab initio nuclear structure calculations provide a powerful framework to deliver first-principle predictions accompanied with theoretical uncertainties. In this Letter, controlled ab initio Bogoliubov coupled cluster (BCC) calculations are performed for the first time, targeting the ground-state of all calcium, nickel and tin isotopes up to mass A≈180. While showing good agreement with available experimental data, the shell structure evolution in neutron-rich isotopes and the location of the neutron drip-lines are predicted. The BCC approach constitutes a key development towards reliable first-principles simulations of heavy-mass open-shell nuclei. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2024.138571 |