Loading…
Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications
A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymme...
Saved in:
Published in: | Symmetry (Basel) 2021-12, Vol.13 (12), p.2357 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2357 |
container_title | Symmetry (Basel) |
container_volume | 13 |
creator | Shrahili, Mansour Elbatal, Ibrahim M. Yousof, Haitham |
description | A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims. |
doi_str_mv | 10.3390/sym13122357 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_148064da9afa4154b21371982e222582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_148064da9afa4154b21371982e222582</doaj_id><sourcerecordid>2612841985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymo-dzfeautHoaCoPYfZbCKpu01Ntof6601bkc5lHvPevHkwWXZJ8A1jEt_GbUcYoZSJ8iQbUFyyvJKSnx7h82wU4xKnEljwAg-yxTitdaYPTqOpWUXXb5H1Ab25-IUmLbguf3c_Bk2hhzv0GkzjdO_8CsGqQfeu8w20exKN1-vWadiR8SI7s9BGM_rrw2zx-PAxec7nL0-zyXiea1bwPhdFbaWuObfcGklBltTqusFliqoB18LWDCfUAC5kja2AyuIENWO0qqhhw2x28G08LNU6uA7CVnlwaj_w4VNB6J1ujSK8wgVvQIIFTgSvKWElkcmFUioqmryuDl7r4L83JvZq6TdhleIrWhBa8SQWSXV9UOngYwzG_l8lWO3eoI7ewH4BVMh4sQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612841985</pqid></control><display><type>article</type><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><source>Publicly Available Content (ProQuest)</source><creator>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</creator><creatorcontrib>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</creatorcontrib><description>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13122357</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>asymmetric data ; Asymmetry ; Autoregressive models ; Autoregressive processes ; autoregressive regression model ; claims forecasting ; Density ; Flexibility ; Insurance ; Insurance companies ; Kurtosis ; likelihood ; mean of deviations ; Modelling ; negatively skewed claims ; Random variables ; Regression models ; Risk analysis ; Water resources</subject><ispartof>Symmetry (Basel), 2021-12, Vol.13 (12), p.2357</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</citedby><cites>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</cites><orcidid>0000-0003-3456-8393 ; 0000-0003-4589-4944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612841985/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612841985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Shrahili, Mansour</creatorcontrib><creatorcontrib>Elbatal, Ibrahim</creatorcontrib><creatorcontrib>M. Yousof, Haitham</creatorcontrib><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><title>Symmetry (Basel)</title><description>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</description><subject>asymmetric data</subject><subject>Asymmetry</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>autoregressive regression model</subject><subject>claims forecasting</subject><subject>Density</subject><subject>Flexibility</subject><subject>Insurance</subject><subject>Insurance companies</subject><subject>Kurtosis</subject><subject>likelihood</subject><subject>mean of deviations</subject><subject>Modelling</subject><subject>negatively skewed claims</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Risk analysis</subject><subject>Water resources</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymo-dzfeautHoaCoPYfZbCKpu01Ntof6601bkc5lHvPevHkwWXZJ8A1jEt_GbUcYoZSJ8iQbUFyyvJKSnx7h82wU4xKnEljwAg-yxTitdaYPTqOpWUXXb5H1Ab25-IUmLbguf3c_Bk2hhzv0GkzjdO_8CsGqQfeu8w20exKN1-vWadiR8SI7s9BGM_rrw2zx-PAxec7nL0-zyXiea1bwPhdFbaWuObfcGklBltTqusFliqoB18LWDCfUAC5kja2AyuIENWO0qqhhw2x28G08LNU6uA7CVnlwaj_w4VNB6J1ujSK8wgVvQIIFTgSvKWElkcmFUioqmryuDl7r4L83JvZq6TdhleIrWhBa8SQWSXV9UOngYwzG_l8lWO3eoI7ewH4BVMh4sQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shrahili, Mansour</creator><creator>Elbatal, Ibrahim</creator><creator>M. Yousof, Haitham</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3456-8393</orcidid><orcidid>https://orcid.org/0000-0003-4589-4944</orcidid></search><sort><creationdate>20211201</creationdate><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><author>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>asymmetric data</topic><topic>Asymmetry</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>autoregressive regression model</topic><topic>claims forecasting</topic><topic>Density</topic><topic>Flexibility</topic><topic>Insurance</topic><topic>Insurance companies</topic><topic>Kurtosis</topic><topic>likelihood</topic><topic>mean of deviations</topic><topic>Modelling</topic><topic>negatively skewed claims</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Risk analysis</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrahili, Mansour</creatorcontrib><creatorcontrib>Elbatal, Ibrahim</creatorcontrib><creatorcontrib>M. Yousof, Haitham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrahili, Mansour</au><au>Elbatal, Ibrahim</au><au>M. Yousof, Haitham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</atitle><jtitle>Symmetry (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>2357</spage><pages>2357-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym13122357</doi><orcidid>https://orcid.org/0000-0003-3456-8393</orcidid><orcidid>https://orcid.org/0000-0003-4589-4944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2021-12, Vol.13 (12), p.2357 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_148064da9afa4154b21371982e222582 |
source | Publicly Available Content (ProQuest) |
subjects | asymmetric data Asymmetry Autoregressive models Autoregressive processes autoregressive regression model claims forecasting Density Flexibility Insurance Insurance companies Kurtosis likelihood mean of deviations Modelling negatively skewed claims Random variables Regression models Risk analysis Water resources |
title | Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Density%20for%20Risk%20Claim-Size%20Data:%20Prediction%20and%20Bimodal%20Data%20Applications&rft.jtitle=Symmetry%20(Basel)&rft.au=Shrahili,%20Mansour&rft.date=2021-12-01&rft.volume=13&rft.issue=12&rft.spage=2357&rft.pages=2357-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13122357&rft_dat=%3Cproquest_doaj_%3E2612841985%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612841985&rft_id=info:pmid/&rfr_iscdi=true |