Loading…

Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications

A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymme...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2021-12, Vol.13 (12), p.2357
Main Authors: Shrahili, Mansour, Elbatal, Ibrahim, M. Yousof, Haitham
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3
cites cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3
container_end_page
container_issue 12
container_start_page 2357
container_title Symmetry (Basel)
container_volume 13
creator Shrahili, Mansour
Elbatal, Ibrahim
M. Yousof, Haitham
description A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.
doi_str_mv 10.3390/sym13122357
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_148064da9afa4154b21371982e222582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_148064da9afa4154b21371982e222582</doaj_id><sourcerecordid>2612841985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymo-dzfeautHoaCoPYfZbCKpu01Ntof6601bkc5lHvPevHkwWXZJ8A1jEt_GbUcYoZSJ8iQbUFyyvJKSnx7h82wU4xKnEljwAg-yxTitdaYPTqOpWUXXb5H1Ab25-IUmLbguf3c_Bk2hhzv0GkzjdO_8CsGqQfeu8w20exKN1-vWadiR8SI7s9BGM_rrw2zx-PAxec7nL0-zyXiea1bwPhdFbaWuObfcGklBltTqusFliqoB18LWDCfUAC5kja2AyuIENWO0qqhhw2x28G08LNU6uA7CVnlwaj_w4VNB6J1ujSK8wgVvQIIFTgSvKWElkcmFUioqmryuDl7r4L83JvZq6TdhleIrWhBa8SQWSXV9UOngYwzG_l8lWO3eoI7ewH4BVMh4sQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612841985</pqid></control><display><type>article</type><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><source>Publicly Available Content (ProQuest)</source><creator>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</creator><creatorcontrib>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</creatorcontrib><description>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym13122357</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>asymmetric data ; Asymmetry ; Autoregressive models ; Autoregressive processes ; autoregressive regression model ; claims forecasting ; Density ; Flexibility ; Insurance ; Insurance companies ; Kurtosis ; likelihood ; mean of deviations ; Modelling ; negatively skewed claims ; Random variables ; Regression models ; Risk analysis ; Water resources</subject><ispartof>Symmetry (Basel), 2021-12, Vol.13 (12), p.2357</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</citedby><cites>FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</cites><orcidid>0000-0003-3456-8393 ; 0000-0003-4589-4944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612841985/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612841985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Shrahili, Mansour</creatorcontrib><creatorcontrib>Elbatal, Ibrahim</creatorcontrib><creatorcontrib>M. Yousof, Haitham</creatorcontrib><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><title>Symmetry (Basel)</title><description>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</description><subject>asymmetric data</subject><subject>Asymmetry</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>autoregressive regression model</subject><subject>claims forecasting</subject><subject>Density</subject><subject>Flexibility</subject><subject>Insurance</subject><subject>Insurance companies</subject><subject>Kurtosis</subject><subject>likelihood</subject><subject>mean of deviations</subject><subject>Modelling</subject><subject>negatively skewed claims</subject><subject>Random variables</subject><subject>Regression models</subject><subject>Risk analysis</subject><subject>Water resources</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymo-dzfeautHoaCoPYfZbCKpu01Ntof6601bkc5lHvPevHkwWXZJ8A1jEt_GbUcYoZSJ8iQbUFyyvJKSnx7h82wU4xKnEljwAg-yxTitdaYPTqOpWUXXb5H1Ab25-IUmLbguf3c_Bk2hhzv0GkzjdO_8CsGqQfeu8w20exKN1-vWadiR8SI7s9BGM_rrw2zx-PAxec7nL0-zyXiea1bwPhdFbaWuObfcGklBltTqusFliqoB18LWDCfUAC5kja2AyuIENWO0qqhhw2x28G08LNU6uA7CVnlwaj_w4VNB6J1ujSK8wgVvQIIFTgSvKWElkcmFUioqmryuDl7r4L83JvZq6TdhleIrWhBa8SQWSXV9UOngYwzG_l8lWO3eoI7ewH4BVMh4sQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shrahili, Mansour</creator><creator>Elbatal, Ibrahim</creator><creator>M. Yousof, Haitham</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3456-8393</orcidid><orcidid>https://orcid.org/0000-0003-4589-4944</orcidid></search><sort><creationdate>20211201</creationdate><title>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</title><author>Shrahili, Mansour ; Elbatal, Ibrahim ; M. Yousof, Haitham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>asymmetric data</topic><topic>Asymmetry</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>autoregressive regression model</topic><topic>claims forecasting</topic><topic>Density</topic><topic>Flexibility</topic><topic>Insurance</topic><topic>Insurance companies</topic><topic>Kurtosis</topic><topic>likelihood</topic><topic>mean of deviations</topic><topic>Modelling</topic><topic>negatively skewed claims</topic><topic>Random variables</topic><topic>Regression models</topic><topic>Risk analysis</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrahili, Mansour</creatorcontrib><creatorcontrib>Elbatal, Ibrahim</creatorcontrib><creatorcontrib>M. Yousof, Haitham</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrahili, Mansour</au><au>Elbatal, Ibrahim</au><au>M. Yousof, Haitham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications</atitle><jtitle>Symmetry (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>2357</spage><pages>2357-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym13122357</doi><orcidid>https://orcid.org/0000-0003-3456-8393</orcidid><orcidid>https://orcid.org/0000-0003-4589-4944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2021-12, Vol.13 (12), p.2357
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_148064da9afa4154b21371982e222582
source Publicly Available Content (ProQuest)
subjects asymmetric data
Asymmetry
Autoregressive models
Autoregressive processes
autoregressive regression model
claims forecasting
Density
Flexibility
Insurance
Insurance companies
Kurtosis
likelihood
mean of deviations
Modelling
negatively skewed claims
Random variables
Regression models
Risk analysis
Water resources
title Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Density%20for%20Risk%20Claim-Size%20Data:%20Prediction%20and%20Bimodal%20Data%20Applications&rft.jtitle=Symmetry%20(Basel)&rft.au=Shrahili,%20Mansour&rft.date=2021-12-01&rft.volume=13&rft.issue=12&rft.spage=2357&rft.pages=2357-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym13122357&rft_dat=%3Cproquest_doaj_%3E2612841985%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-56bf9cb44f4fe92a972fcbd07994ca0b5fb304cada069b0f5a8f0069c332882e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612841985&rft_id=info:pmid/&rfr_iscdi=true