Loading…

Bioengineered cartilaginous grafts for repairing segmental mandibular defects

Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of tissue engineering 2024-01, Vol.15
Main Authors: Al Maruf, D S Abdullah, Xin, Hai, Cheng, Kai, Garcia, Alejandro Garcia, Mohseni-Dargah, Masoud, Ben-Sefer, Eitan, Tomaskovic-Crook, Eva, Crook, Jeremy Micah, Clark, Jonathan Robert
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c305t-8e14f52612fe21a465db48525bac9b6e658776e9000a4d840a6128e2ef3fdc283
container_end_page
container_issue
container_start_page
container_title Journal of tissue engineering
container_volume 15
creator Al Maruf, D S Abdullah
Xin, Hai
Cheng, Kai
Garcia, Alejandro Garcia
Mohseni-Dargah, Masoud
Ben-Sefer, Eitan
Tomaskovic-Crook, Eva
Crook, Jeremy Micah
Clark, Jonathan Robert
description Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
doi_str_mv 10.1177/20417314241267017
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1483fa3beeb94af5bf19a3bbd2fe12fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1483fa3beeb94af5bf19a3bbd2fe12fe</doaj_id><sourcerecordid>oai_doaj_org_article_1483fa3beeb94af5bf19a3bbd2fe12fe</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-8e14f52612fe21a465db48525bac9b6e658776e9000a4d840a6128e2ef3fdc283</originalsourceid><addsrcrecordid>eNplUMtOwzAQtBBIVKUfwC0_EIhfsXOEikelIi5wjtb2OnKVJpWdHvh7HIpQJfayO6PVzO4QckurO0qVumeVoIpTwQRltaqouiCLmStn8vJsviarlHZVLt40SuoFeXsMIw5dGBAjusJCnEIPGY_HVHQR_JQKP8Yi4gFCDENXJOz2OEzQF3sYXDDHHmLh0KOd0g258tAnXP32Jfl8fvpYv5bb95fN-mFbWl7JqdRIhZespswjoyBq6YzQkkkDtjE11lIrVWOT7wThtKggr2pk6Ll3lmm-JJuTrhth1x5i2EP8akcI7Q8xxq6dH7E9tlRo7oEbRNMI8NJ42mRoXPae_bMWPWnZOKYU0f_p0aqd423_xcu_ATVqbec</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bioengineered cartilaginous grafts for repairing segmental mandibular defects</title><source>Sage Journals GOLD Open Access 2024</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Al Maruf, D S Abdullah ; Xin, Hai ; Cheng, Kai ; Garcia, Alejandro Garcia ; Mohseni-Dargah, Masoud ; Ben-Sefer, Eitan ; Tomaskovic-Crook, Eva ; Crook, Jeremy Micah ; Clark, Jonathan Robert</creator><creatorcontrib>Al Maruf, D S Abdullah ; Xin, Hai ; Cheng, Kai ; Garcia, Alejandro Garcia ; Mohseni-Dargah, Masoud ; Ben-Sefer, Eitan ; Tomaskovic-Crook, Eva ; Crook, Jeremy Micah ; Clark, Jonathan Robert</creatorcontrib><description>Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.</description><identifier>ISSN: 2041-7314</identifier><identifier>EISSN: 2041-7314</identifier><identifier>DOI: 10.1177/20417314241267017</identifier><language>eng</language><publisher>SAGE Publishing</publisher><ispartof>Journal of tissue engineering, 2024-01, Vol.15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-8e14f52612fe21a465db48525bac9b6e658776e9000a4d840a6128e2ef3fdc283</cites><orcidid>0000-0002-6914-3910 ; 0000-0001-8573-4035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Al Maruf, D S Abdullah</creatorcontrib><creatorcontrib>Xin, Hai</creatorcontrib><creatorcontrib>Cheng, Kai</creatorcontrib><creatorcontrib>Garcia, Alejandro Garcia</creatorcontrib><creatorcontrib>Mohseni-Dargah, Masoud</creatorcontrib><creatorcontrib>Ben-Sefer, Eitan</creatorcontrib><creatorcontrib>Tomaskovic-Crook, Eva</creatorcontrib><creatorcontrib>Crook, Jeremy Micah</creatorcontrib><creatorcontrib>Clark, Jonathan Robert</creatorcontrib><title>Bioengineered cartilaginous grafts for repairing segmental mandibular defects</title><title>Journal of tissue engineering</title><description>Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.</description><issn>2041-7314</issn><issn>2041-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUMtOwzAQtBBIVKUfwC0_EIhfsXOEikelIi5wjtb2OnKVJpWdHvh7HIpQJfayO6PVzO4QckurO0qVumeVoIpTwQRltaqouiCLmStn8vJsviarlHZVLt40SuoFeXsMIw5dGBAjusJCnEIPGY_HVHQR_JQKP8Yi4gFCDENXJOz2OEzQF3sYXDDHHmLh0KOd0g258tAnXP32Jfl8fvpYv5bb95fN-mFbWl7JqdRIhZespswjoyBq6YzQkkkDtjE11lIrVWOT7wThtKggr2pk6Ll3lmm-JJuTrhth1x5i2EP8akcI7Q8xxq6dH7E9tlRo7oEbRNMI8NJ42mRoXPae_bMWPWnZOKYU0f_p0aqd423_xcu_ATVqbec</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Al Maruf, D S Abdullah</creator><creator>Xin, Hai</creator><creator>Cheng, Kai</creator><creator>Garcia, Alejandro Garcia</creator><creator>Mohseni-Dargah, Masoud</creator><creator>Ben-Sefer, Eitan</creator><creator>Tomaskovic-Crook, Eva</creator><creator>Crook, Jeremy Micah</creator><creator>Clark, Jonathan Robert</creator><general>SAGE Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6914-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-4035</orcidid></search><sort><creationdate>20240101</creationdate><title>Bioengineered cartilaginous grafts for repairing segmental mandibular defects</title><author>Al Maruf, D S Abdullah ; Xin, Hai ; Cheng, Kai ; Garcia, Alejandro Garcia ; Mohseni-Dargah, Masoud ; Ben-Sefer, Eitan ; Tomaskovic-Crook, Eva ; Crook, Jeremy Micah ; Clark, Jonathan Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-8e14f52612fe21a465db48525bac9b6e658776e9000a4d840a6128e2ef3fdc283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Maruf, D S Abdullah</creatorcontrib><creatorcontrib>Xin, Hai</creatorcontrib><creatorcontrib>Cheng, Kai</creatorcontrib><creatorcontrib>Garcia, Alejandro Garcia</creatorcontrib><creatorcontrib>Mohseni-Dargah, Masoud</creatorcontrib><creatorcontrib>Ben-Sefer, Eitan</creatorcontrib><creatorcontrib>Tomaskovic-Crook, Eva</creatorcontrib><creatorcontrib>Crook, Jeremy Micah</creatorcontrib><creatorcontrib>Clark, Jonathan Robert</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of tissue engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Maruf, D S Abdullah</au><au>Xin, Hai</au><au>Cheng, Kai</au><au>Garcia, Alejandro Garcia</au><au>Mohseni-Dargah, Masoud</au><au>Ben-Sefer, Eitan</au><au>Tomaskovic-Crook, Eva</au><au>Crook, Jeremy Micah</au><au>Clark, Jonathan Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioengineered cartilaginous grafts for repairing segmental mandibular defects</atitle><jtitle>Journal of tissue engineering</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issn>2041-7314</issn><eissn>2041-7314</eissn><abstract>Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.</abstract><pub>SAGE Publishing</pub><doi>10.1177/20417314241267017</doi><orcidid>https://orcid.org/0000-0002-6914-3910</orcidid><orcidid>https://orcid.org/0000-0001-8573-4035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-7314
ispartof Journal of tissue engineering, 2024-01, Vol.15
issn 2041-7314
2041-7314
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1483fa3beeb94af5bf19a3bbd2fe12fe
source Sage Journals GOLD Open Access 2024; Publicly Available Content (ProQuest); PubMed Central
title Bioengineered cartilaginous grafts for repairing segmental mandibular defects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioengineered%20cartilaginous%20grafts%20for%20repairing%20segmental%20mandibular%20defects&rft.jtitle=Journal%20of%20tissue%20engineering&rft.au=Al%20Maruf,%20D%20S%20Abdullah&rft.date=2024-01-01&rft.volume=15&rft.issn=2041-7314&rft.eissn=2041-7314&rft_id=info:doi/10.1177/20417314241267017&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1483fa3beeb94af5bf19a3bbd2fe12fe%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-8e14f52612fe21a465db48525bac9b6e658776e9000a4d840a6128e2ef3fdc283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true