Loading…

Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT) has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimension...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in energy research 2018-03, Vol.6
Main Authors: Xiong, Guohuan, Xing, Yuheng, Zhang, Lifa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93
cites cdi_FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93
container_end_page
container_issue
container_start_page
container_title Frontiers in energy research
container_volume 6
creator Xiong, Guohuan
Xing, Yuheng
Zhang, Lifa
description In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT) has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D) atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza) resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM) and the non-equilibrium Green’s function (NEGF) method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads) and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.
doi_str_mv 10.3389/fenrg.2018.00006
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_148748d5301940358b5e3bd8e0bfbc78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_148748d5301940358b5e3bd8e0bfbc78</doaj_id><sourcerecordid>oai_doaj_org_article_148748d5301940358b5e3bd8e0bfbc78</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLR3j_sHtiabj02OpWqtVHqp4C3kY1JTdjcluwr-e7etiHN5h3eG5_AgdEfwjFKp7gN0eTerMJEzPI64QJOqUqLkSr5f_tuv0bTv9-MHoRVnBE_QctUNkINx0TTF9gNye8xsuv6Q8lB8RVNsOigfYgtdH1M3XudDaqMrXj47N4xN8Zo8NLfoKpimh-lv3qC3p8ft4rlcb5arxXxdOsrJUFpCPPdegQiqsjVnYDkxomYV98CUU-ODsMILZxgHFmppFDMBuK_ACafoDVqduT6ZvT7k2Jr8rZOJ-lSkvNMmD9E1oAmTNZOeU0wUw5RLy4FaLwHbYF0tRxY-s1xOfZ8h_PEI1kev-uRVH73qk1f6A6dNbKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Thermal Transport via One-Dimensional Atomic Junction Model</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Xiong, Guohuan ; Xing, Yuheng ; Zhang, Lifa</creator><creatorcontrib>Xiong, Guohuan ; Xing, Yuheng ; Zhang, Lifa</creatorcontrib><description>In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT) has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D) atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza) resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM) and the non-equilibrium Green’s function (NEGF) method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads) and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.</description><identifier>ISSN: 2296-598X</identifier><identifier>EISSN: 2296-598X</identifier><identifier>DOI: 10.3389/fenrg.2018.00006</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>atomic chain ; interfacial resistance ; interfacial thermal transport ; nonlinear interface ; phonon interference ; thermal rectification</subject><ispartof>Frontiers in energy research, 2018-03, Vol.6</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93</citedby><cites>FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiong, Guohuan</creatorcontrib><creatorcontrib>Xing, Yuheng</creatorcontrib><creatorcontrib>Zhang, Lifa</creatorcontrib><title>Interfacial Thermal Transport via One-Dimensional Atomic Junction Model</title><title>Frontiers in energy research</title><description>In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT) has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D) atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza) resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM) and the non-equilibrium Green’s function (NEGF) method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads) and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.</description><subject>atomic chain</subject><subject>interfacial resistance</subject><subject>interfacial thermal transport</subject><subject>nonlinear interface</subject><subject>phonon interference</subject><subject>thermal rectification</subject><issn>2296-598X</issn><issn>2296-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWLR3j_sHtiabj02OpWqtVHqp4C3kY1JTdjcluwr-e7etiHN5h3eG5_AgdEfwjFKp7gN0eTerMJEzPI64QJOqUqLkSr5f_tuv0bTv9-MHoRVnBE_QctUNkINx0TTF9gNye8xsuv6Q8lB8RVNsOigfYgtdH1M3XudDaqMrXj47N4xN8Zo8NLfoKpimh-lv3qC3p8ft4rlcb5arxXxdOsrJUFpCPPdegQiqsjVnYDkxomYV98CUU-ODsMILZxgHFmppFDMBuK_ACafoDVqduT6ZvT7k2Jr8rZOJ-lSkvNMmD9E1oAmTNZOeU0wUw5RLy4FaLwHbYF0tRxY-s1xOfZ8h_PEI1kev-uRVH73qk1f6A6dNbKg</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Xiong, Guohuan</creator><creator>Xing, Yuheng</creator><creator>Zhang, Lifa</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20180306</creationdate><title>Interfacial Thermal Transport via One-Dimensional Atomic Junction Model</title><author>Xiong, Guohuan ; Xing, Yuheng ; Zhang, Lifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>atomic chain</topic><topic>interfacial resistance</topic><topic>interfacial thermal transport</topic><topic>nonlinear interface</topic><topic>phonon interference</topic><topic>thermal rectification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Guohuan</creatorcontrib><creatorcontrib>Xing, Yuheng</creatorcontrib><creatorcontrib>Zhang, Lifa</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Guohuan</au><au>Xing, Yuheng</au><au>Zhang, Lifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Thermal Transport via One-Dimensional Atomic Junction Model</atitle><jtitle>Frontiers in energy research</jtitle><date>2018-03-06</date><risdate>2018</risdate><volume>6</volume><issn>2296-598X</issn><eissn>2296-598X</eissn><abstract>In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT) has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D) atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza) resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM) and the non-equilibrium Green’s function (NEGF) method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads) and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fenrg.2018.00006</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-598X
ispartof Frontiers in energy research, 2018-03, Vol.6
issn 2296-598X
2296-598X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_148748d5301940358b5e3bd8e0bfbc78
source ROAD: Directory of Open Access Scholarly Resources
subjects atomic chain
interfacial resistance
interfacial thermal transport
nonlinear interface
phonon interference
thermal rectification
title Interfacial Thermal Transport via One-Dimensional Atomic Junction Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Thermal%20Transport%20via%20One-Dimensional%20Atomic%20Junction%20Model&rft.jtitle=Frontiers%20in%20energy%20research&rft.au=Xiong,%20Guohuan&rft.date=2018-03-06&rft.volume=6&rft.issn=2296-598X&rft.eissn=2296-598X&rft_id=info:doi/10.3389/fenrg.2018.00006&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_148748d5301940358b5e3bd8e0bfbc78%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-b11d5dd9e6f92b754eb51a67425de49c9b116b6d6ca45e4f78a94afe5d2ec6c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true