Loading…

Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy

Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light‐thermal‐electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilay...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2023-05, Vol.10 (14), p.e2206835-n/a
Main Authors: Hu, Xinpeng, Quan, Bingqing, Zhu, Chuanbiao, Wen, Haoye, Sheng, Mengjie, Liu, Shuang, Li, Xiaolong, Wu, Hao, Lu, Xiang, Qu, Jinping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93
cites cdi_FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93
container_end_page n/a
container_issue 14
container_start_page e2206835
container_title Advanced science
container_volume 10
creator Hu, Xinpeng
Quan, Bingqing
Zhu, Chuanbiao
Wen, Haoye
Sheng, Mengjie
Liu, Shuang
Li, Xiaolong
Wu, Hao
Lu, Xiang
Qu, Jinping
description Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light‐thermal‐electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light‐thermal‐electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide‐range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high‐efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion. The origami process is employed and proved to be efficient to tune the EMI shielding efficiency and improve the light‐thermal‐electric conversion efficiency with the phase‐change‐feedback strategy.
doi_str_mv 10.1002/advs.202206835
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_149718eb149746388265c55d81895fbe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_149718eb149746388265c55d81895fbe</doaj_id><sourcerecordid>2814324766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93</originalsourceid><addsrcrecordid>eNqFks1uEzEUhUcIRKvSLUtkiQ2bBP_OeFaoSn-IVKlIoWwtx74zcZjxBHsSNDueAPGMPAlOJ0QtGza2dX38XR_7ZNlrgqcEY_pe212cUkwpziUTz7JTSko5YZLz54_WJ9l5jGuMMRGs4ES-zE5YXgpc8Pw0-3m_qYO2ztfoqgHTB2dcP6Ab8BB07zqPtLeHra7VtYfeGTT3PYQKAngDaLFy0IyEqkrHU3FAO6fRp5WO8PvHr9lK-xrQNYBdavP1gbhw7aYBdBdcrVuHFn3qBvXwKntR6SbC-WE-y-6vrz7PPk5u727ms4vbiREM44mRmFQURCVtGq0sS4wFIzlly-RRC6sxM4wXQhKuKcdCA5TCgs2pEEVVsrNsPnJtp9dqE1yrw6A67dRDoQu10iE5bUARXhZEwnI_85xJSXNhRGpKZCmqJSTWh5G12S5bsAZ8MtM8gT7d8W6l6m6nCCYlFrJIhHcHQui-bSH2qnXRQNNoD902Klokf7xMn5mkb_-Rrrtt8OmtFE1mGeVFnifVdFSZ0MUYoDrehmC1j47aR0cdo5MOvHns4Sj_G5Qk4KPgu2tg-A9OXVx-WaSPwOwP7prQzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814324766</pqid></control><display><type>article</type><title>Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy</title><source>PubMed Central Free</source><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Hu, Xinpeng ; Quan, Bingqing ; Zhu, Chuanbiao ; Wen, Haoye ; Sheng, Mengjie ; Liu, Shuang ; Li, Xiaolong ; Wu, Hao ; Lu, Xiang ; Qu, Jinping</creator><creatorcontrib>Hu, Xinpeng ; Quan, Bingqing ; Zhu, Chuanbiao ; Wen, Haoye ; Sheng, Mengjie ; Liu, Shuang ; Li, Xiaolong ; Wu, Hao ; Lu, Xiang ; Qu, Jinping</creatorcontrib><description>Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light‐thermal‐electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light‐thermal‐electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide‐range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high‐efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion. The origami process is employed and proved to be efficient to tune the EMI shielding efficiency and improve the light‐thermal‐electric conversion efficiency with the phase‐change‐feedback strategy.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202206835</identifier><identifier>PMID: 36950746</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Contact angle ; Dopamine ; Efficiency ; Electricity ; electromagnetic interference shielding ; Flexibility ; Heat ; Light ; light‐thermal‐electric conversion ; Nanocomposites ; Nanoparticles ; phase‐change feedback ; Photovoltaic cells ; Polymerization ; simple origami strategy ; Solar energy ; upgrading electricity generation</subject><ispartof>Advanced science, 2023-05, Vol.10 (14), p.e2206835-n/a</ispartof><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93</citedby><cites>FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93</cites><orcidid>0000-0002-7484-2302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814324766/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814324766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36950746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xinpeng</creatorcontrib><creatorcontrib>Quan, Bingqing</creatorcontrib><creatorcontrib>Zhu, Chuanbiao</creatorcontrib><creatorcontrib>Wen, Haoye</creatorcontrib><creatorcontrib>Sheng, Mengjie</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Lu, Xiang</creatorcontrib><creatorcontrib>Qu, Jinping</creatorcontrib><title>Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light‐thermal‐electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light‐thermal‐electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide‐range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high‐efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion. The origami process is employed and proved to be efficient to tune the EMI shielding efficiency and improve the light‐thermal‐electric conversion efficiency with the phase‐change‐feedback strategy.</description><subject>Contact angle</subject><subject>Dopamine</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>electromagnetic interference shielding</subject><subject>Flexibility</subject><subject>Heat</subject><subject>Light</subject><subject>light‐thermal‐electric conversion</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>phase‐change feedback</subject><subject>Photovoltaic cells</subject><subject>Polymerization</subject><subject>simple origami strategy</subject><subject>Solar energy</subject><subject>upgrading electricity generation</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEUhUcIRKvSLUtkiQ2bBP_OeFaoSn-IVKlIoWwtx74zcZjxBHsSNDueAPGMPAlOJ0QtGza2dX38XR_7ZNlrgqcEY_pe212cUkwpziUTz7JTSko5YZLz54_WJ9l5jGuMMRGs4ES-zE5YXgpc8Pw0-3m_qYO2ztfoqgHTB2dcP6Ab8BB07zqPtLeHra7VtYfeGTT3PYQKAngDaLFy0IyEqkrHU3FAO6fRp5WO8PvHr9lK-xrQNYBdavP1gbhw7aYBdBdcrVuHFn3qBvXwKntR6SbC-WE-y-6vrz7PPk5u727ms4vbiREM44mRmFQURCVtGq0sS4wFIzlly-RRC6sxM4wXQhKuKcdCA5TCgs2pEEVVsrNsPnJtp9dqE1yrw6A67dRDoQu10iE5bUARXhZEwnI_85xJSXNhRGpKZCmqJSTWh5G12S5bsAZ8MtM8gT7d8W6l6m6nCCYlFrJIhHcHQui-bSH2qnXRQNNoD902Klokf7xMn5mkb_-Rrrtt8OmtFE1mGeVFnifVdFSZ0MUYoDrehmC1j47aR0cdo5MOvHns4Sj_G5Qk4KPgu2tg-A9OXVx-WaSPwOwP7prQzg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hu, Xinpeng</creator><creator>Quan, Bingqing</creator><creator>Zhu, Chuanbiao</creator><creator>Wen, Haoye</creator><creator>Sheng, Mengjie</creator><creator>Liu, Shuang</creator><creator>Li, Xiaolong</creator><creator>Wu, Hao</creator><creator>Lu, Xiang</creator><creator>Qu, Jinping</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7484-2302</orcidid></search><sort><creationdate>20230501</creationdate><title>Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy</title><author>Hu, Xinpeng ; Quan, Bingqing ; Zhu, Chuanbiao ; Wen, Haoye ; Sheng, Mengjie ; Liu, Shuang ; Li, Xiaolong ; Wu, Hao ; Lu, Xiang ; Qu, Jinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contact angle</topic><topic>Dopamine</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>electromagnetic interference shielding</topic><topic>Flexibility</topic><topic>Heat</topic><topic>Light</topic><topic>light‐thermal‐electric conversion</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>phase‐change feedback</topic><topic>Photovoltaic cells</topic><topic>Polymerization</topic><topic>simple origami strategy</topic><topic>Solar energy</topic><topic>upgrading electricity generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xinpeng</creatorcontrib><creatorcontrib>Quan, Bingqing</creatorcontrib><creatorcontrib>Zhu, Chuanbiao</creatorcontrib><creatorcontrib>Wen, Haoye</creatorcontrib><creatorcontrib>Sheng, Mengjie</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Lu, Xiang</creatorcontrib><creatorcontrib>Qu, Jinping</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xinpeng</au><au>Quan, Bingqing</au><au>Zhu, Chuanbiao</au><au>Wen, Haoye</au><au>Sheng, Mengjie</au><au>Liu, Shuang</au><au>Li, Xiaolong</au><au>Wu, Hao</au><au>Lu, Xiang</au><au>Qu, Jinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>10</volume><issue>14</issue><spage>e2206835</spage><epage>n/a</epage><pages>e2206835-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light‐thermal‐electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light‐thermal‐electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide‐range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high‐efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion. The origami process is employed and proved to be efficient to tune the EMI shielding efficiency and improve the light‐thermal‐electric conversion efficiency with the phase‐change‐feedback strategy.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36950746</pmid><doi>10.1002/advs.202206835</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7484-2302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2023-05, Vol.10 (14), p.e2206835-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_149718eb149746388265c55d81895fbe
source PubMed Central Free; Wiley Online Library Open Access; ProQuest - Publicly Available Content Database
subjects Contact angle
Dopamine
Efficiency
Electricity
electromagnetic interference shielding
Flexibility
Heat
Light
light‐thermal‐electric conversion
Nanocomposites
Nanoparticles
phase‐change feedback
Photovoltaic cells
Polymerization
simple origami strategy
Solar energy
upgrading electricity generation
title Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase‐Change Feedback and Simple Origami Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20Electricity%20Generation%20and%20Electromagnetic%20Interference%20Shielding%20Efficiency%20via%20Phase%E2%80%90Change%20Feedback%20and%20Simple%20Origami%20Strategy&rft.jtitle=Advanced%20science&rft.au=Hu,%20Xinpeng&rft.date=2023-05-01&rft.volume=10&rft.issue=14&rft.spage=e2206835&rft.epage=n/a&rft.pages=e2206835-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202206835&rft_dat=%3Cproquest_doaj_%3E2814324766%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5300-c801f2e5f8d2e5d89900531623b537a5da03c3475814a2405aee95ded62557f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814324766&rft_id=info:pmid/36950746&rfr_iscdi=true