Loading…

Hexavalent Chromium Removal from Water and Wastewaters by Electrochemical Processes: Review

Hexavalent chromium (Cr(VI)) is a toxic, mutagenic, teratogenic, and carcinogenic species. Its origin is in industrial activities. Therefore, its effective control is realized on a source basis. Although chemical methods proved effective in removing Cr(VI) from wastewaters, more economic solutions w...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-03, Vol.28 (5), p.2411
Main Authors: Kabdaşlı, Işık, Tünay, Olcay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexavalent chromium (Cr(VI)) is a toxic, mutagenic, teratogenic, and carcinogenic species. Its origin is in industrial activities. Therefore, its effective control is realized on a source basis. Although chemical methods proved effective in removing Cr(VI) from wastewaters, more economic solutions with a minimum sludge production have been sought. Among them, the use of electrochemical processes has emerged as a viable solution to the problem. Much research was conducted in this area. The aim of this review paper is to make a critical evaluation of the literature on Cr(VI) removal by electrochemical methods, particularly electrocoagulation with sacrificial electrodes, and to assess the present data as well as to point out the areas that need further elaboration. Following the review of the theoretical concepts of electrochemical processes, the literature on the electrochemical removal of Cr(VI) was evaluated on the basis of important elements of the system. Among them are initial pH, initial Cr(VI) concentration, current density, type and concentration of supporting electrolyte, and the material of electrodes and their operating characteristics and process kinetics. Dimensionally stable electrodes that realize the reduction process without producing any sludge were evaluated separately. Applications of electrochemical methods to a wide spectrum of industrial effluents were also assessed.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28052411