Loading…

Compressive and bending properties of 3D-printed wood/PLA composites with Re-entrant honeycomb core

This study investigates the mechanical behavior of sandwich structures comprising a re-entrant honeycomb core structure created using wood/polylactic acid (PLA) filaments via fused deposition modeling (FDM) technology. The sandwich structures were manufactured with different face layer thicknesses (...

Full description

Saved in:
Bibliographic Details
Published in:Results in engineering 2024-12, Vol.24, p.103023, Article 103023
Main Authors: Faidallah, Rawabe Fatima, Abd-El Nabi, Ahmed Moustafa, Hanon, Muammel M., Szakál, Zoltán, Oldal, István
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the mechanical behavior of sandwich structures comprising a re-entrant honeycomb core structure created using wood/polylactic acid (PLA) filaments via fused deposition modeling (FDM) technology. The sandwich structures were manufactured with different face layer thicknesses (0 mm, 0.8 mm, and 1.6 mm) and various core topologies. Material characterizations included bending tests, compressive tests, and finite element analysis (FEA) to identify stress concentration areas. In-plane and out-of-plane re-entrant honeycomb core structure specimens were tested to examine the bending properties. In addition, flatwise and edgewise compressive tests were performed to investigate the structures' compressive properties. Furthermore, the modulus of elasticity for each specimen was determined using the finite element technique (FEM). The results reveal that increasing the thickness of the face layer significantly enhances the structure's resistance to bending forces. Furthermore, specimens with an in-plane orientation demonstrated better bending strength compared to those with an out-of-plane orientation due to increased material underloading. In flatwise compressive tests, specimens without a face layer exhibited the highest strength, attributed to their greater displacement. In contrast, edgewise compressive tests showed significant buckling behavior of the face sheet, the maximum stress increased proportionally with the thickness of the face layer, reaching its peak at a skin thickness of 1.6 mm. The findings are validated by ANSYS analysis, which closely mirrors the experimental results, providing insight into flexural modulus, modulus of elasticity, and stress concentration. These findings indicate that architected core structures could be efficiently utilized to improve bending/compressive characteristics and failure mechanisms, providing valuable insights into the mechanical response of sandwich structures for different industrial applications. •Thicker face layer enhances 3D printed wood/PLA composite's resistance to bending forces.•In-plane core orientation outperforms out-of-plane in bending strength, crucial for design.•Addition of face layer significantly increases compressive strength in flatwise and edgewise orientations.•Material exhibits anisotropic properties with varying failure modes under different stresses.•Experimental tests and Ansys simulations show good convergence, validating study's accuracy.
ISSN:2590-1230
2590-1230
DOI:10.1016/j.rineng.2024.103023