Loading…
Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal
In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We compu...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.30689-7, Article 30689 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 30689 |
container_title | Scientific reports |
container_volume | 14 |
creator | Caetano, Constantino Angeli, Leonardo Varela-Lasheras, Irma Coletti, Pietro Morgado, Luisa Lima, Pedro Willem, Lander Nunes, Baltazar Hens, Niel |
description | In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number
R
0
, while accounting for heterogeneity in transmission. We computed sensitivity measures related to
R
0
, that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries. |
doi_str_mv | 10.1038/s41598-024-76604-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f</doaj_id><sourcerecordid>3149653125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSfHYThyfEFqgrFSpHICr5diTrFeJvdjZSvv2eDeltBzwxdbMN_94Rn9RvAZyBYS17xOHWrYVobwSTUN41TwrzinhdUUZpc8fvc-Ky5S2JJ-aSg7yZXHGpGCE1fK8sGuLfnb9wfmhnDdYTtr50kZ3hzGVoS_nqH2aXEou-DKnjgzqOB7K3UYnPCE5tLr9uf5UgSx32lucnDmy30Kc94MeXxUvej0mvLy_L4ofXz5_X32tbm6v16uPN5WhkjWVpECwNbSpDRAQgvVCyM5SLRgagW0jgVtDOaMGOm6RWamlyTBHpI2o2UWxXnRt0Fu1i27S8aCCduoUCHFQOs7OjKiA9x2jQhPGKYe26wTUvTFgRc9AQ5-1Pixau303oTV5S1GPT0SfZrzbqCHcKYCmJS3jWeHdvUIMv_aYZpXXaHActcewT4oBl6IWwGRG3_6DbsM--ryrE9XUDOhxPLpQJoaUIvYPvwGijqZQiylUNoU6mUI1uejN4zkeSv5YIANsAVJO-QHj397_kf0NF2jAtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149653125</pqid></control><display><type>article</type><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</creator><creatorcontrib>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</creatorcontrib><description>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number
R
0
, while accounting for heterogeneity in transmission. We computed sensitivity measures related to
R
0
, that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-76604-6</identifier><identifier>PMID: 39730359</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 692/699/255 ; Adolescent ; Adult ; Age Factors ; Age groups ; Aged ; Basic Reproduction Number ; Child ; Child, Preschool ; Comparative analysis ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - transmission ; COVID-19 - virology ; Disease Susceptibility ; Disease transmission ; Epidemics ; Epidemiology ; Female ; Health promotion ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Incidence ; Infant ; Infectious diseases ; Infectivity ; Male ; Middle Aged ; multidisciplinary ; Outbreaks ; Pandemics ; Portugal - epidemiology ; Public health ; SARS-CoV-2 - isolation & purification ; SARS-CoV-2 - pathogenicity ; Science ; Science (multidisciplinary) ; Young Adult</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30689-7, Article 30689</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149653125/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149653125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74284,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39730359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caetano, Constantino</creatorcontrib><creatorcontrib>Angeli, Leonardo</creatorcontrib><creatorcontrib>Varela-Lasheras, Irma</creatorcontrib><creatorcontrib>Coletti, Pietro</creatorcontrib><creatorcontrib>Morgado, Luisa</creatorcontrib><creatorcontrib>Lima, Pedro</creatorcontrib><creatorcontrib>Willem, Lander</creatorcontrib><creatorcontrib>Nunes, Baltazar</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number
R
0
, while accounting for heterogeneity in transmission. We computed sensitivity measures related to
R
0
, that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</description><subject>639/705/1041</subject><subject>692/699/255</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Age groups</subject><subject>Aged</subject><subject>Basic Reproduction Number</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Comparative analysis</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - transmission</subject><subject>COVID-19 - virology</subject><subject>Disease Susceptibility</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Health promotion</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infant</subject><subject>Infectious diseases</subject><subject>Infectivity</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>Portugal - epidemiology</subject><subject>Public health</subject><subject>SARS-CoV-2 - isolation & purification</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSfHYThyfEFqgrFSpHICr5diTrFeJvdjZSvv2eDeltBzwxdbMN_94Rn9RvAZyBYS17xOHWrYVobwSTUN41TwrzinhdUUZpc8fvc-Ky5S2JJ-aSg7yZXHGpGCE1fK8sGuLfnb9wfmhnDdYTtr50kZ3hzGVoS_nqH2aXEou-DKnjgzqOB7K3UYnPCE5tLr9uf5UgSx32lucnDmy30Kc94MeXxUvej0mvLy_L4ofXz5_X32tbm6v16uPN5WhkjWVpECwNbSpDRAQgvVCyM5SLRgagW0jgVtDOaMGOm6RWamlyTBHpI2o2UWxXnRt0Fu1i27S8aCCduoUCHFQOs7OjKiA9x2jQhPGKYe26wTUvTFgRc9AQ5-1Pixau303oTV5S1GPT0SfZrzbqCHcKYCmJS3jWeHdvUIMv_aYZpXXaHActcewT4oBl6IWwGRG3_6DbsM--ryrE9XUDOhxPLpQJoaUIvYPvwGijqZQiylUNoU6mUI1uejN4zkeSv5YIANsAVJO-QHj397_kf0NF2jAtw</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Caetano, Constantino</creator><creator>Angeli, Leonardo</creator><creator>Varela-Lasheras, Irma</creator><creator>Coletti, Pietro</creator><creator>Morgado, Luisa</creator><creator>Lima, Pedro</creator><creator>Willem, Lander</creator><creator>Nunes, Baltazar</creator><creator>Hens, Niel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241228</creationdate><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><author>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/1041</topic><topic>692/699/255</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Age groups</topic><topic>Aged</topic><topic>Basic Reproduction Number</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Comparative analysis</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - transmission</topic><topic>COVID-19 - virology</topic><topic>Disease Susceptibility</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Health promotion</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infant</topic><topic>Infectious diseases</topic><topic>Infectivity</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>Portugal - epidemiology</topic><topic>Public health</topic><topic>SARS-CoV-2 - isolation & purification</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caetano, Constantino</creatorcontrib><creatorcontrib>Angeli, Leonardo</creatorcontrib><creatorcontrib>Varela-Lasheras, Irma</creatorcontrib><creatorcontrib>Coletti, Pietro</creatorcontrib><creatorcontrib>Morgado, Luisa</creatorcontrib><creatorcontrib>Lima, Pedro</creatorcontrib><creatorcontrib>Willem, Lander</creatorcontrib><creatorcontrib>Nunes, Baltazar</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caetano, Constantino</au><au>Angeli, Leonardo</au><au>Varela-Lasheras, Irma</au><au>Coletti, Pietro</au><au>Morgado, Luisa</au><au>Lima, Pedro</au><au>Willem, Lander</au><au>Nunes, Baltazar</au><au>Hens, Niel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30689</spage><epage>7</epage><pages>30689-7</pages><artnum>30689</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number
R
0
, while accounting for heterogeneity in transmission. We computed sensitivity measures related to
R
0
, that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39730359</pmid><doi>10.1038/s41598-024-76604-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.30689-7, Article 30689 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1041 692/699/255 Adolescent Adult Age Factors Age groups Aged Basic Reproduction Number Child Child, Preschool Comparative analysis COVID-19 COVID-19 - epidemiology COVID-19 - transmission COVID-19 - virology Disease Susceptibility Disease transmission Epidemics Epidemiology Female Health promotion Heterogeneity Humanities and Social Sciences Humans Incidence Infant Infectious diseases Infectivity Male Middle Aged multidisciplinary Outbreaks Pandemics Portugal - epidemiology Public health SARS-CoV-2 - isolation & purification SARS-CoV-2 - pathogenicity Science Science (multidisciplinary) Young Adult |
title | Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20main%20drivers%20of%20transmission%20in%20the%20early%20phase%20of%20the%20COVID-19%20pandemic%20in%20Portugal&rft.jtitle=Scientific%20reports&rft.au=Caetano,%20Constantino&rft.date=2024-12-28&rft.volume=14&rft.issue=1&rft.spage=30689&rft.epage=7&rft.pages=30689-7&rft.artnum=30689&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-76604-6&rft_dat=%3Cproquest_doaj_%3E3149653125%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149653125&rft_id=info:pmid/39730359&rfr_iscdi=true |