Loading…

Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal

In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We compu...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-12, Vol.14 (1), p.30689-7, Article 30689
Main Authors: Caetano, Constantino, Angeli, Leonardo, Varela-Lasheras, Irma, Coletti, Pietro, Morgado, Luisa, Lima, Pedro, Willem, Lander, Nunes, Baltazar, Hens, Niel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753
container_end_page 7
container_issue 1
container_start_page 30689
container_title Scientific reports
container_volume 14
creator Caetano, Constantino
Angeli, Leonardo
Varela-Lasheras, Irma
Coletti, Pietro
Morgado, Luisa
Lima, Pedro
Willem, Lander
Nunes, Baltazar
Hens, Niel
description In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We computed sensitivity measures related to R 0 , that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.
doi_str_mv 10.1038/s41598-024-76604-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f</doaj_id><sourcerecordid>3149653125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSfHYThyfEFqgrFSpHICr5diTrFeJvdjZSvv2eDeltBzwxdbMN_94Rn9RvAZyBYS17xOHWrYVobwSTUN41TwrzinhdUUZpc8fvc-Ky5S2JJ-aSg7yZXHGpGCE1fK8sGuLfnb9wfmhnDdYTtr50kZ3hzGVoS_nqH2aXEou-DKnjgzqOB7K3UYnPCE5tLr9uf5UgSx32lucnDmy30Kc94MeXxUvej0mvLy_L4ofXz5_X32tbm6v16uPN5WhkjWVpECwNbSpDRAQgvVCyM5SLRgagW0jgVtDOaMGOm6RWamlyTBHpI2o2UWxXnRt0Fu1i27S8aCCduoUCHFQOs7OjKiA9x2jQhPGKYe26wTUvTFgRc9AQ5-1Pixau303oTV5S1GPT0SfZrzbqCHcKYCmJS3jWeHdvUIMv_aYZpXXaHActcewT4oBl6IWwGRG3_6DbsM--ryrE9XUDOhxPLpQJoaUIvYPvwGijqZQiylUNoU6mUI1uejN4zkeSv5YIANsAVJO-QHj397_kf0NF2jAtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149653125</pqid></control><display><type>article</type><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</creator><creatorcontrib>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</creatorcontrib><description>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We computed sensitivity measures related to R 0 , that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-76604-6</identifier><identifier>PMID: 39730359</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 692/699/255 ; Adolescent ; Adult ; Age Factors ; Age groups ; Aged ; Basic Reproduction Number ; Child ; Child, Preschool ; Comparative analysis ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - transmission ; COVID-19 - virology ; Disease Susceptibility ; Disease transmission ; Epidemics ; Epidemiology ; Female ; Health promotion ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Incidence ; Infant ; Infectious diseases ; Infectivity ; Male ; Middle Aged ; multidisciplinary ; Outbreaks ; Pandemics ; Portugal - epidemiology ; Public health ; SARS-CoV-2 - isolation &amp; purification ; SARS-CoV-2 - pathogenicity ; Science ; Science (multidisciplinary) ; Young Adult</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30689-7, Article 30689</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149653125/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149653125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74284,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39730359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caetano, Constantino</creatorcontrib><creatorcontrib>Angeli, Leonardo</creatorcontrib><creatorcontrib>Varela-Lasheras, Irma</creatorcontrib><creatorcontrib>Coletti, Pietro</creatorcontrib><creatorcontrib>Morgado, Luisa</creatorcontrib><creatorcontrib>Lima, Pedro</creatorcontrib><creatorcontrib>Willem, Lander</creatorcontrib><creatorcontrib>Nunes, Baltazar</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We computed sensitivity measures related to R 0 , that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</description><subject>639/705/1041</subject><subject>692/699/255</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Age groups</subject><subject>Aged</subject><subject>Basic Reproduction Number</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Comparative analysis</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - transmission</subject><subject>COVID-19 - virology</subject><subject>Disease Susceptibility</subject><subject>Disease transmission</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Health promotion</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infant</subject><subject>Infectious diseases</subject><subject>Infectivity</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Outbreaks</subject><subject>Pandemics</subject><subject>Portugal - epidemiology</subject><subject>Public health</subject><subject>SARS-CoV-2 - isolation &amp; purification</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSfHYThyfEFqgrFSpHICr5diTrFeJvdjZSvv2eDeltBzwxdbMN_94Rn9RvAZyBYS17xOHWrYVobwSTUN41TwrzinhdUUZpc8fvc-Ky5S2JJ-aSg7yZXHGpGCE1fK8sGuLfnb9wfmhnDdYTtr50kZ3hzGVoS_nqH2aXEou-DKnjgzqOB7K3UYnPCE5tLr9uf5UgSx32lucnDmy30Kc94MeXxUvej0mvLy_L4ofXz5_X32tbm6v16uPN5WhkjWVpECwNbSpDRAQgvVCyM5SLRgagW0jgVtDOaMGOm6RWamlyTBHpI2o2UWxXnRt0Fu1i27S8aCCduoUCHFQOs7OjKiA9x2jQhPGKYe26wTUvTFgRc9AQ5-1Pixau303oTV5S1GPT0SfZrzbqCHcKYCmJS3jWeHdvUIMv_aYZpXXaHActcewT4oBl6IWwGRG3_6DbsM--ryrE9XUDOhxPLpQJoaUIvYPvwGijqZQiylUNoU6mUI1uejN4zkeSv5YIANsAVJO-QHj397_kf0NF2jAtw</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Caetano, Constantino</creator><creator>Angeli, Leonardo</creator><creator>Varela-Lasheras, Irma</creator><creator>Coletti, Pietro</creator><creator>Morgado, Luisa</creator><creator>Lima, Pedro</creator><creator>Willem, Lander</creator><creator>Nunes, Baltazar</creator><creator>Hens, Niel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241228</creationdate><title>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</title><author>Caetano, Constantino ; Angeli, Leonardo ; Varela-Lasheras, Irma ; Coletti, Pietro ; Morgado, Luisa ; Lima, Pedro ; Willem, Lander ; Nunes, Baltazar ; Hens, Niel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/1041</topic><topic>692/699/255</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Age groups</topic><topic>Aged</topic><topic>Basic Reproduction Number</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Comparative analysis</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - transmission</topic><topic>COVID-19 - virology</topic><topic>Disease Susceptibility</topic><topic>Disease transmission</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Health promotion</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infant</topic><topic>Infectious diseases</topic><topic>Infectivity</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Outbreaks</topic><topic>Pandemics</topic><topic>Portugal - epidemiology</topic><topic>Public health</topic><topic>SARS-CoV-2 - isolation &amp; purification</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caetano, Constantino</creatorcontrib><creatorcontrib>Angeli, Leonardo</creatorcontrib><creatorcontrib>Varela-Lasheras, Irma</creatorcontrib><creatorcontrib>Coletti, Pietro</creatorcontrib><creatorcontrib>Morgado, Luisa</creatorcontrib><creatorcontrib>Lima, Pedro</creatorcontrib><creatorcontrib>Willem, Lander</creatorcontrib><creatorcontrib>Nunes, Baltazar</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caetano, Constantino</au><au>Angeli, Leonardo</au><au>Varela-Lasheras, Irma</au><au>Coletti, Pietro</au><au>Morgado, Luisa</au><au>Lima, Pedro</au><au>Willem, Lander</au><au>Nunes, Baltazar</au><au>Hens, Niel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30689</spage><epage>7</epage><pages>30689-7</pages><artnum>30689</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we employed a modeling approach to describe how changes in age-specific epidemiological characteristics, such as behaviour, i.e. contact patterns, susceptibility and infectivity, influence the basic reproduction number R 0 , while accounting for heterogeneity in transmission. We computed sensitivity measures related to R 0 , that describe the relative contribution of each age group towards overall transmission. Additionally, we proposed a new indicator that provides the expected relative change in the number of new infections, given a public health intervention. Studying the outbreak of COVID-19 in Portugal during March 2020, our results show that the main drivers of transmission were individuals 30–59 years old. Furthermore, by studying the impact of imposed changes in susceptibility and infectivity, our results demonstrate that a 10% decrease in susceptibility for the 30–39 years old results in a incidence reduction after 3 generations of approximately 17% in this age group and 4–6% reduction as an indirect effect in the remaining age groups. The presented methodology provides tools to inform the allocation strategy of mitigation measures in an outbreak of an infectious disease. Its inherent versatility enables the easy incorporation of data specific to various populations, facilitating a comparative analysis of epidemic control effects across different countries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39730359</pmid><doi>10.1038/s41598-024-76604-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-12, Vol.14 (1), p.30689-7, Article 30689
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_14fb327a0342418bb715fcc1d7f31a1f
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/1041
692/699/255
Adolescent
Adult
Age Factors
Age groups
Aged
Basic Reproduction Number
Child
Child, Preschool
Comparative analysis
COVID-19
COVID-19 - epidemiology
COVID-19 - transmission
COVID-19 - virology
Disease Susceptibility
Disease transmission
Epidemics
Epidemiology
Female
Health promotion
Heterogeneity
Humanities and Social Sciences
Humans
Incidence
Infant
Infectious diseases
Infectivity
Male
Middle Aged
multidisciplinary
Outbreaks
Pandemics
Portugal - epidemiology
Public health
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - pathogenicity
Science
Science (multidisciplinary)
Young Adult
title Identifying the main drivers of transmission in the early phase of the COVID-19 pandemic in Portugal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20main%20drivers%20of%20transmission%20in%20the%20early%20phase%20of%20the%20COVID-19%20pandemic%20in%20Portugal&rft.jtitle=Scientific%20reports&rft.au=Caetano,%20Constantino&rft.date=2024-12-28&rft.volume=14&rft.issue=1&rft.spage=30689&rft.epage=7&rft.pages=30689-7&rft.artnum=30689&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-76604-6&rft_dat=%3Cproquest_doaj_%3E3149653125%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2936-9210e8c265c101773f779bd2a73ec7e86914dc2432c1b4de3d9a9c5c14ee26753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149653125&rft_id=info:pmid/39730359&rfr_iscdi=true