Loading…

Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels

Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-12, Vol.16 (23), p.7885
Main Authors: Eneren, Pinar, Aksoy, Yunus Tansu, Vetrano, Maria Rosaria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3
cites cdi_FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3
container_end_page
container_issue 23
container_start_page 7885
container_title Energies (Basel)
container_volume 16
creator Eneren, Pinar
Aksoy, Yunus Tansu
Vetrano, Maria Rosaria
description Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside microchannels under laminar conditions. Water and commercially available water-based nanosuspensions, including Al2O3-water (30–60 nm), TiO2-water (5–30 nm), and polystyrene-water (50 nm), are circulated through silicon MCHS having rectangular channels integrated into a closed flow loop. To assess the in situ and real-time nanoparticle clustering during heat transfer experiments, Light Extinction Spectroscopy (LES) is applied as a non-intrusive measurement technique on nanofluids without any fluid sampling. Our findings reveal the appearance of nanofluid discoloration with no measurable increase in heat transfer coefficient. This unexpected change is attributed to the interplay of abrasion, erosion, and corrosion phenomena, likely triggered by the clustering of nanoparticles within the silicon microchannels—a novel insight into the complex dynamics of nanofluid behavior (an increase in the De Brouckere mean diameter from 11 nm to 107.3 nm over a 2.5 h period for TiO2 nanoparticles). The resulting material loss could not be mitigated by altering the nanoparticle material, which may impede heat transfer enhancement under tested conditions.
doi_str_mv 10.3390/en16237885
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_152428fa008f4b43a4f0b299040c932a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775889568</galeid><doaj_id>oai_doaj_org_article_152428fa008f4b43a4f0b299040c932a</doaj_id><sourcerecordid>A775889568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3</originalsourceid><addsrcrecordid>eNpNUcFqHDEMHUoLDUku_YKB3gqbypZnbB_D0jYLSVtoQo5G65U3XiZ2as8G8vd1sqGtdJAQT4-np677IOAM0cJnTmKUqI0Z3nRHwtpxIUDj2__6991prTtogSgQ8ai7_VnIz9HT1C_vaJo4bbn2MfXfKeUw7eOmX-b0yA3zyP0F09xfF0o1cOlXqcYN97_iFH1O_VX0Jfs7SomnetK9CzRVPn2tx93N1y_Xy4vF5Y9vq-X55cIrgHmhAsoRhQTtDSIxkFbKjp7XQo2acEDFKpCGIJQcpEAPFtY0sJbBB2Y87lYH3k2mnXso8Z7Kk8sU3csgl62j0u6b2IlBKmkCAZig1gpJBVhLa0GBtyipcX08cD2U_HvPdXa7vC-pyXfSWKvACKEb6uyA2lIjjSnkuVnYcsP3zz5wiG1-rvVgjB1G0xY-HRaaPbUWDn9lCnDPj3P_Hod_ABIKiHk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899408117</pqid></control><display><type>article</type><title>Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels</title><source>Publicly Available Content Database</source><creator>Eneren, Pinar ; Aksoy, Yunus Tansu ; Vetrano, Maria Rosaria</creator><creatorcontrib>Eneren, Pinar ; Aksoy, Yunus Tansu ; Vetrano, Maria Rosaria</creatorcontrib><description>Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside microchannels under laminar conditions. Water and commercially available water-based nanosuspensions, including Al2O3-water (30–60 nm), TiO2-water (5–30 nm), and polystyrene-water (50 nm), are circulated through silicon MCHS having rectangular channels integrated into a closed flow loop. To assess the in situ and real-time nanoparticle clustering during heat transfer experiments, Light Extinction Spectroscopy (LES) is applied as a non-intrusive measurement technique on nanofluids without any fluid sampling. Our findings reveal the appearance of nanofluid discoloration with no measurable increase in heat transfer coefficient. This unexpected change is attributed to the interplay of abrasion, erosion, and corrosion phenomena, likely triggered by the clustering of nanoparticles within the silicon microchannels—a novel insight into the complex dynamics of nanofluid behavior (an increase in the De Brouckere mean diameter from 11 nm to 107.3 nm over a 2.5 h period for TiO2 nanoparticles). The resulting material loss could not be mitigated by altering the nanoparticle material, which may impede heat transfer enhancement under tested conditions.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16237885</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cooling ; Equipment and supplies ; Heat conductivity ; Heat transfer ; Heating ; LES technique ; microchannel heat sink ; nanofluid discoloration ; nanofluids heat transfer ; nanoparticle clustering ; Nanoparticles ; Reynolds number ; Silicon ; Soil erosion ; Stainless steel ; Temperature ; tribological effects ; Viscosity</subject><ispartof>Energies (Basel), 2023-12, Vol.16 (23), p.7885</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3</citedby><cites>FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3</cites><orcidid>0000-0002-8927-3309 ; 0000-0001-8781-2869 ; 0000-0003-1528-079X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2899408117/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2899408117?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Eneren, Pinar</creatorcontrib><creatorcontrib>Aksoy, Yunus Tansu</creatorcontrib><creatorcontrib>Vetrano, Maria Rosaria</creatorcontrib><title>Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels</title><title>Energies (Basel)</title><description>Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside microchannels under laminar conditions. Water and commercially available water-based nanosuspensions, including Al2O3-water (30–60 nm), TiO2-water (5–30 nm), and polystyrene-water (50 nm), are circulated through silicon MCHS having rectangular channels integrated into a closed flow loop. To assess the in situ and real-time nanoparticle clustering during heat transfer experiments, Light Extinction Spectroscopy (LES) is applied as a non-intrusive measurement technique on nanofluids without any fluid sampling. Our findings reveal the appearance of nanofluid discoloration with no measurable increase in heat transfer coefficient. This unexpected change is attributed to the interplay of abrasion, erosion, and corrosion phenomena, likely triggered by the clustering of nanoparticles within the silicon microchannels—a novel insight into the complex dynamics of nanofluid behavior (an increase in the De Brouckere mean diameter from 11 nm to 107.3 nm over a 2.5 h period for TiO2 nanoparticles). The resulting material loss could not be mitigated by altering the nanoparticle material, which may impede heat transfer enhancement under tested conditions.</description><subject>Cooling</subject><subject>Equipment and supplies</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>LES technique</subject><subject>microchannel heat sink</subject><subject>nanofluid discoloration</subject><subject>nanofluids heat transfer</subject><subject>nanoparticle clustering</subject><subject>Nanoparticles</subject><subject>Reynolds number</subject><subject>Silicon</subject><subject>Soil erosion</subject><subject>Stainless steel</subject><subject>Temperature</subject><subject>tribological effects</subject><subject>Viscosity</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFqHDEMHUoLDUku_YKB3gqbypZnbB_D0jYLSVtoQo5G65U3XiZ2as8G8vd1sqGtdJAQT4-np677IOAM0cJnTmKUqI0Z3nRHwtpxIUDj2__6991prTtogSgQ8ai7_VnIz9HT1C_vaJo4bbn2MfXfKeUw7eOmX-b0yA3zyP0F09xfF0o1cOlXqcYN97_iFH1O_VX0Jfs7SomnetK9CzRVPn2tx93N1y_Xy4vF5Y9vq-X55cIrgHmhAsoRhQTtDSIxkFbKjp7XQo2acEDFKpCGIJQcpEAPFtY0sJbBB2Y87lYH3k2mnXso8Z7Kk8sU3csgl62j0u6b2IlBKmkCAZig1gpJBVhLa0GBtyipcX08cD2U_HvPdXa7vC-pyXfSWKvACKEb6uyA2lIjjSnkuVnYcsP3zz5wiG1-rvVgjB1G0xY-HRaaPbUWDn9lCnDPj3P_Hod_ABIKiHk</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Eneren, Pinar</creator><creator>Aksoy, Yunus Tansu</creator><creator>Vetrano, Maria Rosaria</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8927-3309</orcidid><orcidid>https://orcid.org/0000-0001-8781-2869</orcidid><orcidid>https://orcid.org/0000-0003-1528-079X</orcidid></search><sort><creationdate>20231201</creationdate><title>Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels</title><author>Eneren, Pinar ; Aksoy, Yunus Tansu ; Vetrano, Maria Rosaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cooling</topic><topic>Equipment and supplies</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>LES technique</topic><topic>microchannel heat sink</topic><topic>nanofluid discoloration</topic><topic>nanofluids heat transfer</topic><topic>nanoparticle clustering</topic><topic>Nanoparticles</topic><topic>Reynolds number</topic><topic>Silicon</topic><topic>Soil erosion</topic><topic>Stainless steel</topic><topic>Temperature</topic><topic>tribological effects</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eneren, Pinar</creatorcontrib><creatorcontrib>Aksoy, Yunus Tansu</creatorcontrib><creatorcontrib>Vetrano, Maria Rosaria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eneren, Pinar</au><au>Aksoy, Yunus Tansu</au><au>Vetrano, Maria Rosaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels</atitle><jtitle>Energies (Basel)</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>16</volume><issue>23</issue><spage>7885</spage><pages>7885-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside microchannels under laminar conditions. Water and commercially available water-based nanosuspensions, including Al2O3-water (30–60 nm), TiO2-water (5–30 nm), and polystyrene-water (50 nm), are circulated through silicon MCHS having rectangular channels integrated into a closed flow loop. To assess the in situ and real-time nanoparticle clustering during heat transfer experiments, Light Extinction Spectroscopy (LES) is applied as a non-intrusive measurement technique on nanofluids without any fluid sampling. Our findings reveal the appearance of nanofluid discoloration with no measurable increase in heat transfer coefficient. This unexpected change is attributed to the interplay of abrasion, erosion, and corrosion phenomena, likely triggered by the clustering of nanoparticles within the silicon microchannels—a novel insight into the complex dynamics of nanofluid behavior (an increase in the De Brouckere mean diameter from 11 nm to 107.3 nm over a 2.5 h period for TiO2 nanoparticles). The resulting material loss could not be mitigated by altering the nanoparticle material, which may impede heat transfer enhancement under tested conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16237885</doi><orcidid>https://orcid.org/0000-0002-8927-3309</orcidid><orcidid>https://orcid.org/0000-0001-8781-2869</orcidid><orcidid>https://orcid.org/0000-0003-1528-079X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-12, Vol.16 (23), p.7885
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_152428fa008f4b43a4f0b299040c932a
source Publicly Available Content Database
subjects Cooling
Equipment and supplies
Heat conductivity
Heat transfer
Heating
LES technique
microchannel heat sink
nanofluid discoloration
nanofluids heat transfer
nanoparticle clustering
Nanoparticles
Reynolds number
Silicon
Soil erosion
Stainless steel
Temperature
tribological effects
Viscosity
title Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Challenges%20in%20Nanofluid%20Convective%20Heat%20Transfer%20Inside%20Silicon%20Microchannels&rft.jtitle=Energies%20(Basel)&rft.au=Eneren,%20Pinar&rft.date=2023-12-01&rft.volume=16&rft.issue=23&rft.spage=7885&rft.pages=7885-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16237885&rft_dat=%3Cgale_doaj_%3EA775889568%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-4f32631207c833ae0a74496ceb1467a3534e4fa70f1425213c090ba5e72fcfee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899408117&rft_id=info:pmid/&rft_galeid=A775889568&rfr_iscdi=true