Loading…
Fast and robust quantification of uncertainty in non-linear diffusion MRI models
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Ma...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943 |
container_end_page | 120496 |
container_issue | |
container_start_page | 120496 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 285 |
creator | Harms, R L Fritz, F J Schoenmakers, S Roebroeck, A |
description | Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts. |
doi_str_mv | 10.1016/j.neuroimage.2023.120496 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf</doaj_id><sourcerecordid>2902948866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</originalsourceid><addsrcrecordid>eNpdkc1u1TAQRiMEakvpK6BIbNjk4vFf7CWqaHulViAEa2vs2JWjXLu1k0XfnoRbitSVR9aZzzM-TdMC2QEB-WXcJb-UHA9473eUULYDSriWb5ozIFp0WvT07VYL1ikAfdq8r3UkhGjg6qQ5ZWqN4VqcNT-usM4tpqEt2S5r-bhgmmOIDueYU5tDuyTny4wxzU9tTG3KqZti8ljaIYaw1A27-7lvD3nwU_3QvAs4VX_xfJ43v6--_bq86W6_X-8vv952jhM-d9Ryy72WgQmUqAcFIiAo9AEAkWlBg7MSIQgumOYkwKCD5SAH3oPVnJ03-2PukHE0D2X9i_JkMkbz9yKXe4Nljm7yBgR10rnAei241gG5C1xbGdasXtqwZn0-Zj2U_Lj4OptDrM5PEyafl2qoJlRzpaRc0U-v0DEvJa2brhSA4kr0G6WOlCu51uLDy4BAzGbQjOa_QbMZNEeDa-vH5wcWe_DDS-M_ZewPvu-aUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911848576</pqid></control><display><type>article</type><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><source>ScienceDirect Freedom Collection</source><creator>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</creator><creatorcontrib>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</creatorcontrib><description>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2023.120496</identifier><identifier>PMID: 38101495</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Anisotropy ; Axons ; Computational neuroscience ; Cramér Rao Lower Bound (CRLB) ; Datasets ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion MRI ; Estimates ; Fisher Information Matrix (FIM) ; Humans ; Investigations ; Magnetic resonance imaging ; Markov analysis ; Markov Chains ; Microstructure ; Neurites ; Neuroimaging ; Neurosciences ; Signal to noise ratio ; Uncertainty ; Uncertainty estimates ; Variances</subject><ispartof>NeuroImage (Orlando, Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496</ispartof><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</cites><orcidid>0000-0003-0895-1145 ; 0000-0001-7429-0694 ; 0000-0002-6506-6508 ; 0000-0002-7910-6160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38101495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harms, R L</creatorcontrib><creatorcontrib>Fritz, F J</creatorcontrib><creatorcontrib>Schoenmakers, S</creatorcontrib><creatorcontrib>Roebroeck, A</creatorcontrib><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</description><subject>Anisotropy</subject><subject>Axons</subject><subject>Computational neuroscience</subject><subject>Cramér Rao Lower Bound (CRLB)</subject><subject>Datasets</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion MRI</subject><subject>Estimates</subject><subject>Fisher Information Matrix (FIM)</subject><subject>Humans</subject><subject>Investigations</subject><subject>Magnetic resonance imaging</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Microstructure</subject><subject>Neurites</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Signal to noise ratio</subject><subject>Uncertainty</subject><subject>Uncertainty estimates</subject><subject>Variances</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkc1u1TAQRiMEakvpK6BIbNjk4vFf7CWqaHulViAEa2vs2JWjXLu1k0XfnoRbitSVR9aZzzM-TdMC2QEB-WXcJb-UHA9473eUULYDSriWb5ozIFp0WvT07VYL1ikAfdq8r3UkhGjg6qQ5ZWqN4VqcNT-usM4tpqEt2S5r-bhgmmOIDueYU5tDuyTny4wxzU9tTG3KqZti8ljaIYaw1A27-7lvD3nwU_3QvAs4VX_xfJ43v6--_bq86W6_X-8vv952jhM-d9Ryy72WgQmUqAcFIiAo9AEAkWlBg7MSIQgumOYkwKCD5SAH3oPVnJ03-2PukHE0D2X9i_JkMkbz9yKXe4Nljm7yBgR10rnAei241gG5C1xbGdasXtqwZn0-Zj2U_Lj4OptDrM5PEyafl2qoJlRzpaRc0U-v0DEvJa2brhSA4kr0G6WOlCu51uLDy4BAzGbQjOa_QbMZNEeDa-vH5wcWe_DDS-M_ZewPvu-aUw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Harms, R L</creator><creator>Fritz, F J</creator><creator>Schoenmakers, S</creator><creator>Roebroeck, A</creator><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0895-1145</orcidid><orcidid>https://orcid.org/0000-0001-7429-0694</orcidid><orcidid>https://orcid.org/0000-0002-6506-6508</orcidid><orcidid>https://orcid.org/0000-0002-7910-6160</orcidid></search><sort><creationdate>202401</creationdate><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><author>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Axons</topic><topic>Computational neuroscience</topic><topic>Cramér Rao Lower Bound (CRLB)</topic><topic>Datasets</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion MRI</topic><topic>Estimates</topic><topic>Fisher Information Matrix (FIM)</topic><topic>Humans</topic><topic>Investigations</topic><topic>Magnetic resonance imaging</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Microstructure</topic><topic>Neurites</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Signal to noise ratio</topic><topic>Uncertainty</topic><topic>Uncertainty estimates</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harms, R L</creatorcontrib><creatorcontrib>Fritz, F J</creatorcontrib><creatorcontrib>Schoenmakers, S</creatorcontrib><creatorcontrib>Roebroeck, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, R L</au><au>Fritz, F J</au><au>Schoenmakers, S</au><au>Roebroeck, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2024-01</date><risdate>2024</risdate><volume>285</volume><spage>120496</spage><epage>120496</epage><pages>120496-120496</pages><artnum>120496</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>38101495</pmid><doi>10.1016/j.neuroimage.2023.120496</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0895-1145</orcidid><orcidid>https://orcid.org/0000-0001-7429-0694</orcidid><orcidid>https://orcid.org/0000-0002-6506-6508</orcidid><orcidid>https://orcid.org/0000-0002-7910-6160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf |
source | ScienceDirect Freedom Collection |
subjects | Anisotropy Axons Computational neuroscience Cramér Rao Lower Bound (CRLB) Datasets Diffusion Magnetic Resonance Imaging - methods Diffusion MRI Estimates Fisher Information Matrix (FIM) Humans Investigations Magnetic resonance imaging Markov analysis Markov Chains Microstructure Neurites Neuroimaging Neurosciences Signal to noise ratio Uncertainty Uncertainty estimates Variances |
title | Fast and robust quantification of uncertainty in non-linear diffusion MRI models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20robust%20quantification%20of%20uncertainty%20in%20non-linear%20diffusion%20MRI%20models&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Harms,%20R%20L&rft.date=2024-01&rft.volume=285&rft.spage=120496&rft.epage=120496&rft.pages=120496-120496&rft.artnum=120496&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2023.120496&rft_dat=%3Cproquest_doaj_%3E2902948866%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911848576&rft_id=info:pmid/38101495&rfr_iscdi=true |