Loading…

Fast and robust quantification of uncertainty in non-linear diffusion MRI models

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Ma...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496
Main Authors: Harms, R L, Fritz, F J, Schoenmakers, S, Roebroeck, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943
container_end_page 120496
container_issue
container_start_page 120496
container_title NeuroImage (Orlando, Fla.)
container_volume 285
creator Harms, R L
Fritz, F J
Schoenmakers, S
Roebroeck, A
description Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
doi_str_mv 10.1016/j.neuroimage.2023.120496
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf</doaj_id><sourcerecordid>2902948866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</originalsourceid><addsrcrecordid>eNpdkc1u1TAQRiMEakvpK6BIbNjk4vFf7CWqaHulViAEa2vs2JWjXLu1k0XfnoRbitSVR9aZzzM-TdMC2QEB-WXcJb-UHA9473eUULYDSriWb5ozIFp0WvT07VYL1ikAfdq8r3UkhGjg6qQ5ZWqN4VqcNT-usM4tpqEt2S5r-bhgmmOIDueYU5tDuyTny4wxzU9tTG3KqZti8ljaIYaw1A27-7lvD3nwU_3QvAs4VX_xfJ43v6--_bq86W6_X-8vv952jhM-d9Ryy72WgQmUqAcFIiAo9AEAkWlBg7MSIQgumOYkwKCD5SAH3oPVnJ03-2PukHE0D2X9i_JkMkbz9yKXe4Nljm7yBgR10rnAei241gG5C1xbGdasXtqwZn0-Zj2U_Lj4OptDrM5PEyafl2qoJlRzpaRc0U-v0DEvJa2brhSA4kr0G6WOlCu51uLDy4BAzGbQjOa_QbMZNEeDa-vH5wcWe_DDS-M_ZewPvu-aUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911848576</pqid></control><display><type>article</type><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><source>ScienceDirect Freedom Collection</source><creator>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</creator><creatorcontrib>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</creatorcontrib><description>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2023.120496</identifier><identifier>PMID: 38101495</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Anisotropy ; Axons ; Computational neuroscience ; Cramér Rao Lower Bound (CRLB) ; Datasets ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion MRI ; Estimates ; Fisher Information Matrix (FIM) ; Humans ; Investigations ; Magnetic resonance imaging ; Markov analysis ; Markov Chains ; Microstructure ; Neurites ; Neuroimaging ; Neurosciences ; Signal to noise ratio ; Uncertainty ; Uncertainty estimates ; Variances</subject><ispartof>NeuroImage (Orlando, Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496</ispartof><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</cites><orcidid>0000-0003-0895-1145 ; 0000-0001-7429-0694 ; 0000-0002-6506-6508 ; 0000-0002-7910-6160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38101495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harms, R L</creatorcontrib><creatorcontrib>Fritz, F J</creatorcontrib><creatorcontrib>Schoenmakers, S</creatorcontrib><creatorcontrib>Roebroeck, A</creatorcontrib><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</description><subject>Anisotropy</subject><subject>Axons</subject><subject>Computational neuroscience</subject><subject>Cramér Rao Lower Bound (CRLB)</subject><subject>Datasets</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion MRI</subject><subject>Estimates</subject><subject>Fisher Information Matrix (FIM)</subject><subject>Humans</subject><subject>Investigations</subject><subject>Magnetic resonance imaging</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Microstructure</subject><subject>Neurites</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Signal to noise ratio</subject><subject>Uncertainty</subject><subject>Uncertainty estimates</subject><subject>Variances</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkc1u1TAQRiMEakvpK6BIbNjk4vFf7CWqaHulViAEa2vs2JWjXLu1k0XfnoRbitSVR9aZzzM-TdMC2QEB-WXcJb-UHA9473eUULYDSriWb5ozIFp0WvT07VYL1ikAfdq8r3UkhGjg6qQ5ZWqN4VqcNT-usM4tpqEt2S5r-bhgmmOIDueYU5tDuyTny4wxzU9tTG3KqZti8ljaIYaw1A27-7lvD3nwU_3QvAs4VX_xfJ43v6--_bq86W6_X-8vv952jhM-d9Ryy72WgQmUqAcFIiAo9AEAkWlBg7MSIQgumOYkwKCD5SAH3oPVnJ03-2PukHE0D2X9i_JkMkbz9yKXe4Nljm7yBgR10rnAei241gG5C1xbGdasXtqwZn0-Zj2U_Lj4OptDrM5PEyafl2qoJlRzpaRc0U-v0DEvJa2brhSA4kr0G6WOlCu51uLDy4BAzGbQjOa_QbMZNEeDa-vH5wcWe_DDS-M_ZewPvu-aUw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Harms, R L</creator><creator>Fritz, F J</creator><creator>Schoenmakers, S</creator><creator>Roebroeck, A</creator><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0895-1145</orcidid><orcidid>https://orcid.org/0000-0001-7429-0694</orcidid><orcidid>https://orcid.org/0000-0002-6506-6508</orcidid><orcidid>https://orcid.org/0000-0002-7910-6160</orcidid></search><sort><creationdate>202401</creationdate><title>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</title><author>Harms, R L ; Fritz, F J ; Schoenmakers, S ; Roebroeck, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Axons</topic><topic>Computational neuroscience</topic><topic>Cramér Rao Lower Bound (CRLB)</topic><topic>Datasets</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion MRI</topic><topic>Estimates</topic><topic>Fisher Information Matrix (FIM)</topic><topic>Humans</topic><topic>Investigations</topic><topic>Magnetic resonance imaging</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Microstructure</topic><topic>Neurites</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Signal to noise ratio</topic><topic>Uncertainty</topic><topic>Uncertainty estimates</topic><topic>Variances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harms, R L</creatorcontrib><creatorcontrib>Fritz, F J</creatorcontrib><creatorcontrib>Schoenmakers, S</creatorcontrib><creatorcontrib>Roebroeck, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, R L</au><au>Fritz, F J</au><au>Schoenmakers, S</au><au>Roebroeck, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and robust quantification of uncertainty in non-linear diffusion MRI models</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2024-01</date><risdate>2024</risdate><volume>285</volume><spage>120496</spage><epage>120496</epage><pages>120496-120496</pages><artnum>120496</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>38101495</pmid><doi>10.1016/j.neuroimage.2023.120496</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0895-1145</orcidid><orcidid>https://orcid.org/0000-0001-7429-0694</orcidid><orcidid>https://orcid.org/0000-0002-6506-6508</orcidid><orcidid>https://orcid.org/0000-0002-7910-6160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2024-01, Vol.285, p.120496-120496, Article 120496
issn 1053-8119
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_152c6ccf3795499fa4cf49b6fd4776bf
source ScienceDirect Freedom Collection
subjects Anisotropy
Axons
Computational neuroscience
Cramér Rao Lower Bound (CRLB)
Datasets
Diffusion Magnetic Resonance Imaging - methods
Diffusion MRI
Estimates
Fisher Information Matrix (FIM)
Humans
Investigations
Magnetic resonance imaging
Markov analysis
Markov Chains
Microstructure
Neurites
Neuroimaging
Neurosciences
Signal to noise ratio
Uncertainty
Uncertainty estimates
Variances
title Fast and robust quantification of uncertainty in non-linear diffusion MRI models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20robust%20quantification%20of%20uncertainty%20in%20non-linear%20diffusion%20MRI%20models&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Harms,%20R%20L&rft.date=2024-01&rft.volume=285&rft.spage=120496&rft.epage=120496&rft.pages=120496-120496&rft.artnum=120496&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2023.120496&rft_dat=%3Cproquest_doaj_%3E2902948866%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-2b4b4e96f35a6a9d815fa18aef11aa3952fcb6a1f5453940f1d9fb416d471b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2911848576&rft_id=info:pmid/38101495&rfr_iscdi=true