Loading…

Cortical recruitment determines learning dynamics and strategy

Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-04, Vol.10 (1), p.1479-1479, Article 1479
Main Authors: Ceballo, Sebastian, Bourg, Jacques, Kempf, Alexandre, Piwkowska, Zuzanna, Daret, Aurélie, Pinson, Pierre, Deneux, Thomas, Rumpel, Simon, Bathellier, Brice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salience is a broad and widely used concept in neuroscience whose neuronal correlates, however, remain elusive. In behavioral conditioning, salience is used to explain various effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can be associated with a conditioned event. Here, we identify sounds of equal intensity and perceptual detectability, which due to their spectro-temporal content recruit different levels of population activity in mouse auditory cortex. When using these sounds as cues in a Go/NoGo discrimination task, the degree of cortical recruitment matches the salience parameter of a reinforcement learning model used to analyze learning speed. We test an essential prediction of this model by training mice to discriminate light-sculpted optogenetic activity patterns in auditory cortex, and verify that cortical recruitment causally determines association or overshadowing of the stimulus components. This demonstrates that cortical recruitment underlies major aspects of stimulus salience during reinforcement learning. Sounds vary in the strength of behavioural conditioning they can evoke, a property attributed to stimulus salience. Here, the authors show that stimulus salience the overall level of neuronal activity recruited in the auditory cortex is strongly related with its reinforcing strength.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09450-0