Loading…
Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines
Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides inc...
Saved in:
Published in: | Nature communications 2024-05, Vol.15 (1), p.4588-13, Article 4588 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-d20ca0579720a84749aa0717c1ca1b64512be14f9fc9e5f17add23cfdc32d6253 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 4588 |
container_title | Nature communications |
container_volume | 15 |
creator | Li, Shao-Yang Wang, Gao-Qian Long, Liang Gao, Jia-Ling Zhou, Zheng-Qun Wang, Yong-Heng Lv, Jian-Ming Chen, Guo-Dong Hu, Dan Abe, Ikuro Gao, Hao |
description | Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
The study identified and structurally characterized the UDP-glycosyltransferases (UGTs) responsible for regioselective glycosylation of wolfberry-derived bioactive lycibarbarspermidines, elucidating the molecular basis for their substrate specificity. |
doi_str_mv | 10.1038/s41467-024-49010-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1566b6ddaa074074b8179b7c1589039f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1566b6ddaa074074b8179b7c1589039f</doaj_id><sourcerecordid>3062308448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d20ca0579720a84749aa0717c1ca1b64512be14f9fc9e5f17add23cfdc32d6253</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCfgWO1miikKlSmxgbTn2-OCjHLt4nKI8Cy-Lz0kpiAWWJV_m-_-xPNM0Lyl5Swkf3qGgQqqOMNGJkVDSjU-ac0YE7ahi_Olf-7PmEnFP6uAjHYR43pzxYaBScH7e_Lxeoi0hRTO3JroWS15sWXI9uoAIp1ibfLubV5twnUs2ET1kg4DtEh3keQ1x15ZvsDEu3EPGUNaj6kea_QQ5r10Fa8C1U0immt5DW1UZXIBYsK3CMJlcJ95BPgQXIuCL5pk3M8Llw3rRfL3-8OXqU3f7-ePN1fvbznIpS-cYsYb0alSMmEEoMRpDFFWWWkMnKXrKJqDCj96O0HuqjHOMW-8sZ06ynl80N5uvS2av73I4mLzqZII-XaS80yaXYGfQtJdyks4dM4g6p4Gqcaqp-mGs3-ur15vN6y6n7wtg0YeAFubZREgLak4kF71Svajo63_QfVpyLcSJYpzUWg2VYhtlc0LM4B8fSIk-doLeOkHXTtCnTtBjFb16sF6mA7hHye-6V4BvANZQ3EH-k_s_tr8A3E7CmQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062308448</pqid></control><display><type>article</type><title>Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Shao-Yang ; Wang, Gao-Qian ; Long, Liang ; Gao, Jia-Ling ; Zhou, Zheng-Qun ; Wang, Yong-Heng ; Lv, Jian-Ming ; Chen, Guo-Dong ; Hu, Dan ; Abe, Ikuro ; Gao, Hao</creator><creatorcontrib>Li, Shao-Yang ; Wang, Gao-Qian ; Long, Liang ; Gao, Jia-Ling ; Zhou, Zheng-Qun ; Wang, Yong-Heng ; Lv, Jian-Ming ; Chen, Guo-Dong ; Hu, Dan ; Abe, Ikuro ; Gao, Hao</creatorcontrib><description>Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
The study identified and structurally characterized the UDP-glycosyltransferases (UGTs) responsible for regioselective glycosylation of wolfberry-derived bioactive lycibarbarspermidines, elucidating the molecular basis for their substrate specificity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-49010-9</identifier><identifier>PMID: 38816433</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/2667 ; 631/45/607 ; 631/535/1266 ; Biological activity ; Crystal structure ; Crystallography, X-Ray ; Enzymes ; Glycosides ; Glycosides - chemistry ; Glycosides - metabolism ; Glycosylation ; Glycosyltransferases - chemistry ; Glycosyltransferases - genetics ; Glycosyltransferases - metabolism ; Humanities and Social Sciences ; Ingredients ; Lycium ; Lycium - chemistry ; Lycium - enzymology ; Lycium - metabolism ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutagenesis ; Mutagenesis, Site-Directed ; Piperidines - chemistry ; Piperidines - metabolism ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Regioselectivity ; Science ; Science (multidisciplinary) ; Site-directed mutagenesis ; Structural analysis ; Structure-function relationships ; Substrate Specificity ; Substrates ; Sugar ; Tyrosine</subject><ispartof>Nature communications, 2024-05, Vol.15 (1), p.4588-13, Article 4588</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-d20ca0579720a84749aa0717c1ca1b64512be14f9fc9e5f17add23cfdc32d6253</cites><orcidid>0000-0002-1104-8646 ; 0000-0003-1178-0121 ; 0000-0002-3640-888X ; 0009-0006-1754-3054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062308448/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062308448?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38816433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shao-Yang</creatorcontrib><creatorcontrib>Wang, Gao-Qian</creatorcontrib><creatorcontrib>Long, Liang</creatorcontrib><creatorcontrib>Gao, Jia-Ling</creatorcontrib><creatorcontrib>Zhou, Zheng-Qun</creatorcontrib><creatorcontrib>Wang, Yong-Heng</creatorcontrib><creatorcontrib>Lv, Jian-Ming</creatorcontrib><creatorcontrib>Chen, Guo-Dong</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Abe, Ikuro</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><title>Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
The study identified and structurally characterized the UDP-glycosyltransferases (UGTs) responsible for regioselective glycosylation of wolfberry-derived bioactive lycibarbarspermidines, elucidating the molecular basis for their substrate specificity.</description><subject>631/449/2667</subject><subject>631/45/607</subject><subject>631/535/1266</subject><subject>Biological activity</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Glycosides</subject><subject>Glycosides - chemistry</subject><subject>Glycosides - metabolism</subject><subject>Glycosylation</subject><subject>Glycosyltransferases - chemistry</subject><subject>Glycosyltransferases - genetics</subject><subject>Glycosyltransferases - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Ingredients</subject><subject>Lycium</subject><subject>Lycium - chemistry</subject><subject>Lycium - enzymology</subject><subject>Lycium - metabolism</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Piperidines - chemistry</subject><subject>Piperidines - metabolism</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Regioselectivity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Site-directed mutagenesis</subject><subject>Structural analysis</subject><subject>Structure-function relationships</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Tyrosine</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCfgWO1miikKlSmxgbTn2-OCjHLt4nKI8Cy-Lz0kpiAWWJV_m-_-xPNM0Lyl5Swkf3qGgQqqOMNGJkVDSjU-ac0YE7ahi_Olf-7PmEnFP6uAjHYR43pzxYaBScH7e_Lxeoi0hRTO3JroWS15sWXI9uoAIp1ibfLubV5twnUs2ET1kg4DtEh3keQ1x15ZvsDEu3EPGUNaj6kea_QQ5r10Fa8C1U0immt5DW1UZXIBYsK3CMJlcJ95BPgQXIuCL5pk3M8Llw3rRfL3-8OXqU3f7-ePN1fvbznIpS-cYsYb0alSMmEEoMRpDFFWWWkMnKXrKJqDCj96O0HuqjHOMW-8sZ06ynl80N5uvS2av73I4mLzqZII-XaS80yaXYGfQtJdyks4dM4g6p4Gqcaqp-mGs3-ur15vN6y6n7wtg0YeAFubZREgLak4kF71Svajo63_QfVpyLcSJYpzUWg2VYhtlc0LM4B8fSIk-doLeOkHXTtCnTtBjFb16sF6mA7hHye-6V4BvANZQ3EH-k_s_tr8A3E7CmQ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Li, Shao-Yang</creator><creator>Wang, Gao-Qian</creator><creator>Long, Liang</creator><creator>Gao, Jia-Ling</creator><creator>Zhou, Zheng-Qun</creator><creator>Wang, Yong-Heng</creator><creator>Lv, Jian-Ming</creator><creator>Chen, Guo-Dong</creator><creator>Hu, Dan</creator><creator>Abe, Ikuro</creator><creator>Gao, Hao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1104-8646</orcidid><orcidid>https://orcid.org/0000-0003-1178-0121</orcidid><orcidid>https://orcid.org/0000-0002-3640-888X</orcidid><orcidid>https://orcid.org/0009-0006-1754-3054</orcidid></search><sort><creationdate>20240530</creationdate><title>Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines</title><author>Li, Shao-Yang ; Wang, Gao-Qian ; Long, Liang ; Gao, Jia-Ling ; Zhou, Zheng-Qun ; Wang, Yong-Heng ; Lv, Jian-Ming ; Chen, Guo-Dong ; Hu, Dan ; Abe, Ikuro ; Gao, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d20ca0579720a84749aa0717c1ca1b64512be14f9fc9e5f17add23cfdc32d6253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/449/2667</topic><topic>631/45/607</topic><topic>631/535/1266</topic><topic>Biological activity</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Glycosides</topic><topic>Glycosides - chemistry</topic><topic>Glycosides - metabolism</topic><topic>Glycosylation</topic><topic>Glycosyltransferases - chemistry</topic><topic>Glycosyltransferases - genetics</topic><topic>Glycosyltransferases - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Ingredients</topic><topic>Lycium</topic><topic>Lycium - chemistry</topic><topic>Lycium - enzymology</topic><topic>Lycium - metabolism</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Piperidines - chemistry</topic><topic>Piperidines - metabolism</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Regioselectivity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Site-directed mutagenesis</topic><topic>Structural analysis</topic><topic>Structure-function relationships</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shao-Yang</creatorcontrib><creatorcontrib>Wang, Gao-Qian</creatorcontrib><creatorcontrib>Long, Liang</creatorcontrib><creatorcontrib>Gao, Jia-Ling</creatorcontrib><creatorcontrib>Zhou, Zheng-Qun</creatorcontrib><creatorcontrib>Wang, Yong-Heng</creatorcontrib><creatorcontrib>Lv, Jian-Ming</creatorcontrib><creatorcontrib>Chen, Guo-Dong</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Abe, Ikuro</creatorcontrib><creatorcontrib>Gao, Hao</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shao-Yang</au><au>Wang, Gao-Qian</au><au>Long, Liang</au><au>Gao, Jia-Ling</au><au>Zhou, Zheng-Qun</au><au>Wang, Yong-Heng</au><au>Lv, Jian-Ming</au><au>Chen, Guo-Dong</au><au>Hu, Dan</au><au>Abe, Ikuro</au><au>Gao, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4588</spage><epage>13</epage><pages>4588-13</pages><artnum>4588</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
The study identified and structurally characterized the UDP-glycosyltransferases (UGTs) responsible for regioselective glycosylation of wolfberry-derived bioactive lycibarbarspermidines, elucidating the molecular basis for their substrate specificity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38816433</pmid><doi>10.1038/s41467-024-49010-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1104-8646</orcidid><orcidid>https://orcid.org/0000-0003-1178-0121</orcidid><orcidid>https://orcid.org/0000-0002-3640-888X</orcidid><orcidid>https://orcid.org/0009-0006-1754-3054</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-05, Vol.15 (1), p.4588-13, Article 4588 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1566b6ddaa074074b8179b7c1589039f |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/449/2667 631/45/607 631/535/1266 Biological activity Crystal structure Crystallography, X-Ray Enzymes Glycosides Glycosides - chemistry Glycosides - metabolism Glycosylation Glycosyltransferases - chemistry Glycosyltransferases - genetics Glycosyltransferases - metabolism Humanities and Social Sciences Ingredients Lycium Lycium - chemistry Lycium - enzymology Lycium - metabolism Molecular dynamics Molecular Dynamics Simulation multidisciplinary Mutagenesis Mutagenesis, Site-Directed Piperidines - chemistry Piperidines - metabolism Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Regioselectivity Science Science (multidisciplinary) Site-directed mutagenesis Structural analysis Structure-function relationships Substrate Specificity Substrates Sugar Tyrosine |
title | Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20and%20structural%20dissection%20of%20glycosyltransferases%20underlying%20the%20glycodiversity%20of%20wolfberry-derived%20bioactive%20ingredients%20lycibarbarspermidines&rft.jtitle=Nature%20communications&rft.au=Li,%20Shao-Yang&rft.date=2024-05-30&rft.volume=15&rft.issue=1&rft.spage=4588&rft.epage=13&rft.pages=4588-13&rft.artnum=4588&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-49010-9&rft_dat=%3Cproquest_doaj_%3E3062308448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-d20ca0579720a84749aa0717c1ca1b64512be14f9fc9e5f17add23cfdc32d6253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062308448&rft_id=info:pmid/38816433&rfr_iscdi=true |