Loading…
Promotion of hMDSC differentiation by combined action of scaffold material and TGF-β superfamily growth factors
Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and redu...
Saved in:
Published in: | Regenerative therapy 2024-12, Vol.27, p.307-318 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein we propose a combined action of collagen type I (CA) or synthetic collagen-like-peptide functionalized with the cell adhesive RGD motif (PEG-CLP-RGD) hydrogels and selected growth factors to promote chondrogenic differentiation of human muscle-derived stem cells (hMDSCs) under normal and reduced oxygen conditions.
hMDSCs were set for differentiation towards chondrogenic lineage using BMP-7 and TGF-β3. Cells were seeded onto hydrogels loaded with growth factors (75ng/scaffold) and cultured for 28 days under normal (21%) and severe hypoxic (1%) conditions. Chondrogenesis was evaluated by monitoring collagen type II and GAG deposition, and quantification of ACAN expression by RT-PCR.
Sustained release of TGFβ3 from the hydrogels was observed, 8.7 ± 0.5% of the initially loaded amount diffused out after 24 h from both substrates. For the BMP-7 growth factor, 14.8 ± 0.3% and 18.2 ± 0.6% of the initially loaded amount diffused out after 24 h from CA and CLP-RGD, respectively. The key findings of this study are: i) the self-supporting hydrogels themselves can stimulate hMDSC chondrogenesis by inducing gene expression of cartilage-specific proteoglycan aggrecan and ECM production; ii) the effect of dual BMP-7 and TGF-β3 loading was more pronounced on CA hydrogel under normal oxygen conditions; iii) dual loading on PEG-CLP-RGD hydrogels did not have the synergistic effect, TGF-β3 was more effective under both oxygen conditions; iv) BMP-7 can improve chondrogenic effect of TGF-β3 on CA scaffolds, and hydrogels loaded with both growth factors can induce cartilage formation in hMDSC cultures.
Our results support the potential strategy of combining implantable hydrogels functionalized with differentiation factors toward improving cartilaginous repair. |
---|---|
ISSN: | 2352-3204 2352-3204 |
DOI: | 10.1016/j.reth.2024.03.018 |