Loading…
Self-Assembled Inkjet Printer for Droplet Digital Loop-Mediated Isothermal Amplification
Developing rapid and inexpensive diagnostic tools for molecular detection has been pushed forward by the advancements of technical aspects. However, attention has rarely been paid to the molecular detection methodology using inkjet printing technique. Herein, we developed an approach that employed a...
Saved in:
Published in: | Chemosensors 2022-07, Vol.10 (7), p.247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing rapid and inexpensive diagnostic tools for molecular detection has been pushed forward by the advancements of technical aspects. However, attention has rarely been paid to the molecular detection methodology using inkjet printing technique. Herein, we developed an approach that employed a self-assembled inkjet printer as the enabling technology to realize droplet digital loop-mediated isothermal amplification in a low-cost and practical format. An inkjet printer is a self-assembled tool for the generation of discrete droplets in controllable volumes from a picoliter to a nanoliter. A microfluidic chip serves as a droplets reservoir to perform droplet digital LAMP assays. The inkjet printer approach successfully quantified the HPV16 from CaSki cells. This self-assembled and practical inkjet printer device may therefore become a promising tool for rapid molecular detection and can be extended to on-site analysis. |
---|---|
ISSN: | 2227-9040 2227-9040 |
DOI: | 10.3390/chemosensors10070247 |