Loading…

Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset

Epilepsy is a brain disorder that causes patients to have multiple seizures. About 30% of patients with epilepsy are not treated with medication or surgery. The abnormal activity of brain before occurring of a seizure (about a few minutes before a seizure occurs) are known as the preictal area. Ther...

Full description

Saved in:
Bibliographic Details
Published in:Engineering reports (Hoboken, N.J.) N.J.), 2024-11, Vol.6 (11), p.n/a
Main Authors: Esmaeilpour, Ali, Tabarestani, Shaghayegh Shahiri, Niazi, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93
cites cdi_FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93
container_end_page n/a
container_issue 11
container_start_page
container_title Engineering reports (Hoboken, N.J.)
container_volume 6
creator Esmaeilpour, Ali
Tabarestani, Shaghayegh Shahiri
Niazi, Alireza
description Epilepsy is a brain disorder that causes patients to have multiple seizures. About 30% of patients with epilepsy are not treated with medication or surgery. The abnormal activity of brain before occurring of a seizure (about a few minutes before a seizure occurs) are known as the preictal area. Therefore, if we can predict this state, we can control possible seizures by using appropriate medications. In this study, we present a method for predicting epileptic seizures using electroencephalogram (EEG) signals. The method can identify the preictal region that occurs before the onset of seizures. In our proposed method, first the noise removal of EEG signals is performed, and then the necessary features are extracted using a convolution neural network. Finally, we use the feature vectors in order to train multiple classifiers, fully connected layer, random forest, and support vector machines with linear kernel. Additionally, we apply maximum voting, which is an ensemble method, to classify preictal segments from interictal ones. In this study, using EEG signals of patients from CHB‐MIT dataset, we were able to achieve sensitivity of 90.76%. The high sensitivity rate is indicative of the model's ability to accurately predict seizures, which can be critical for timely intervention. The low false prediction rate minimizes unnecessary interventions, thereby reducing the burden on patients and healthcare systems.
doi_str_mv 10.1002/eng2.12918
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_15a9e5d1bde6483683931535832762ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_15a9e5d1bde6483683931535832762ca</doaj_id><sourcerecordid>3123590512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93</originalsourceid><addsrcrecordid>eNp9kcFu00AQhi0EElXohSdYiRtSys6u7fVyKyFNIxV6KefVeD1ON3K8ZtcBpScu3HlGnoRNjKqeeprRzDf_L82fZW-BXwDn4gP1G3EBQkP1IjsThVLzCnT58kn_OjuPccsTDAq45GfZ789EA-sIQ-_6zd9ff2qM1LBI7mEfiA2BGmdH53u2jwlgy-WKRbfpsYsf2SWzfjdgwNH9IIZpeIguMt8y22GMrnUWT7c7Gu99kzY9G--JLa4_Jacv6zvW4Jj8xjfZqzYp0vn_Osu-XS3vFtfzm9vVenF5M7c5l9W8UiBIa5VrjVxapQEQbS6JwCI0QtUKrOVlXpS1lhUAAcq81rWAFpTVcpatJ93G49YMwe0wHIxHZ04DHzYGw-hsRwYK1FQ0UDdU5pUsK6klFLKopFClsJi03k1aQ_Df9xRHs_X7cHyMkSBkoXmRyix7P1E2-BgDtY-uwM0xNXNMzZxSSzBM8E_X0eEZ0iy_rsR08w_4S5nt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123590512</pqid></control><display><type>article</type><title>Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Esmaeilpour, Ali ; Tabarestani, Shaghayegh Shahiri ; Niazi, Alireza</creator><creatorcontrib>Esmaeilpour, Ali ; Tabarestani, Shaghayegh Shahiri ; Niazi, Alireza</creatorcontrib><description>Epilepsy is a brain disorder that causes patients to have multiple seizures. About 30% of patients with epilepsy are not treated with medication or surgery. The abnormal activity of brain before occurring of a seizure (about a few minutes before a seizure occurs) are known as the preictal area. Therefore, if we can predict this state, we can control possible seizures by using appropriate medications. In this study, we present a method for predicting epileptic seizures using electroencephalogram (EEG) signals. The method can identify the preictal region that occurs before the onset of seizures. In our proposed method, first the noise removal of EEG signals is performed, and then the necessary features are extracted using a convolution neural network. Finally, we use the feature vectors in order to train multiple classifiers, fully connected layer, random forest, and support vector machines with linear kernel. Additionally, we apply maximum voting, which is an ensemble method, to classify preictal segments from interictal ones. In this study, using EEG signals of patients from CHB‐MIT dataset, we were able to achieve sensitivity of 90.76%. The high sensitivity rate is indicative of the model's ability to accurately predict seizures, which can be critical for timely intervention. The low false prediction rate minimizes unnecessary interventions, thereby reducing the burden on patients and healthcare systems.</description><identifier>ISSN: 2577-8196</identifier><identifier>EISSN: 2577-8196</identifier><identifier>DOI: 10.1002/eng2.12918</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Accuracy ; Artificial neural networks ; Brain ; Brain research ; Classification ; convolutional neural network (CNN) ; Convulsions &amp; seizures ; Datasets ; Deep learning ; electroencephalogram ; Electroencephalography ; Epilepsy ; Feature extraction ; Machine learning ; Neural networks ; Noise prediction ; Patients ; Performance evaluation ; predicting epileptic Seizures ; Predictive control ; random forest ; Seizures ; Signal classification ; support vector machine (SVM) ; Support vector machines</subject><ispartof>Engineering reports (Hoboken, N.J.), 2024-11, Vol.6 (11), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93</citedby><cites>FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93</cites><orcidid>0000-0003-2084-7439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3123590512/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3123590512?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,25731,27901,27902,36989,44566,46027,46451,74869</link.rule.ids></links><search><creatorcontrib>Esmaeilpour, Ali</creatorcontrib><creatorcontrib>Tabarestani, Shaghayegh Shahiri</creatorcontrib><creatorcontrib>Niazi, Alireza</creatorcontrib><title>Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset</title><title>Engineering reports (Hoboken, N.J.)</title><description>Epilepsy is a brain disorder that causes patients to have multiple seizures. About 30% of patients with epilepsy are not treated with medication or surgery. The abnormal activity of brain before occurring of a seizure (about a few minutes before a seizure occurs) are known as the preictal area. Therefore, if we can predict this state, we can control possible seizures by using appropriate medications. In this study, we present a method for predicting epileptic seizures using electroencephalogram (EEG) signals. The method can identify the preictal region that occurs before the onset of seizures. In our proposed method, first the noise removal of EEG signals is performed, and then the necessary features are extracted using a convolution neural network. Finally, we use the feature vectors in order to train multiple classifiers, fully connected layer, random forest, and support vector machines with linear kernel. Additionally, we apply maximum voting, which is an ensemble method, to classify preictal segments from interictal ones. In this study, using EEG signals of patients from CHB‐MIT dataset, we were able to achieve sensitivity of 90.76%. The high sensitivity rate is indicative of the model's ability to accurately predict seizures, which can be critical for timely intervention. The low false prediction rate minimizes unnecessary interventions, thereby reducing the burden on patients and healthcare systems.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain research</subject><subject>Classification</subject><subject>convolutional neural network (CNN)</subject><subject>Convulsions &amp; seizures</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>electroencephalogram</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise prediction</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>predicting epileptic Seizures</subject><subject>Predictive control</subject><subject>random forest</subject><subject>Seizures</subject><subject>Signal classification</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><issn>2577-8196</issn><issn>2577-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFu00AQhi0EElXohSdYiRtSys6u7fVyKyFNIxV6KefVeD1ON3K8ZtcBpScu3HlGnoRNjKqeeprRzDf_L82fZW-BXwDn4gP1G3EBQkP1IjsThVLzCnT58kn_OjuPccsTDAq45GfZ789EA-sIQ-_6zd9ff2qM1LBI7mEfiA2BGmdH53u2jwlgy-WKRbfpsYsf2SWzfjdgwNH9IIZpeIguMt8y22GMrnUWT7c7Gu99kzY9G--JLa4_Jacv6zvW4Jj8xjfZqzYp0vn_Osu-XS3vFtfzm9vVenF5M7c5l9W8UiBIa5VrjVxapQEQbS6JwCI0QtUKrOVlXpS1lhUAAcq81rWAFpTVcpatJ93G49YMwe0wHIxHZ04DHzYGw-hsRwYK1FQ0UDdU5pUsK6klFLKopFClsJi03k1aQ_Df9xRHs_X7cHyMkSBkoXmRyix7P1E2-BgDtY-uwM0xNXNMzZxSSzBM8E_X0eEZ0iy_rsR08w_4S5nt</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Esmaeilpour, Ali</creator><creator>Tabarestani, Shaghayegh Shahiri</creator><creator>Niazi, Alireza</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2084-7439</orcidid></search><sort><creationdate>202411</creationdate><title>Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset</title><author>Esmaeilpour, Ali ; Tabarestani, Shaghayegh Shahiri ; Niazi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain research</topic><topic>Classification</topic><topic>convolutional neural network (CNN)</topic><topic>Convulsions &amp; seizures</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>electroencephalogram</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise prediction</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>predicting epileptic Seizures</topic><topic>Predictive control</topic><topic>random forest</topic><topic>Seizures</topic><topic>Signal classification</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeilpour, Ali</creatorcontrib><creatorcontrib>Tabarestani, Shaghayegh Shahiri</creatorcontrib><creatorcontrib>Niazi, Alireza</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Engineering reports (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeilpour, Ali</au><au>Tabarestani, Shaghayegh Shahiri</au><au>Niazi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset</atitle><jtitle>Engineering reports (Hoboken, N.J.)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>6</volume><issue>11</issue><epage>n/a</epage><issn>2577-8196</issn><eissn>2577-8196</eissn><abstract>Epilepsy is a brain disorder that causes patients to have multiple seizures. About 30% of patients with epilepsy are not treated with medication or surgery. The abnormal activity of brain before occurring of a seizure (about a few minutes before a seizure occurs) are known as the preictal area. Therefore, if we can predict this state, we can control possible seizures by using appropriate medications. In this study, we present a method for predicting epileptic seizures using electroencephalogram (EEG) signals. The method can identify the preictal region that occurs before the onset of seizures. In our proposed method, first the noise removal of EEG signals is performed, and then the necessary features are extracted using a convolution neural network. Finally, we use the feature vectors in order to train multiple classifiers, fully connected layer, random forest, and support vector machines with linear kernel. Additionally, we apply maximum voting, which is an ensemble method, to classify preictal segments from interictal ones. In this study, using EEG signals of patients from CHB‐MIT dataset, we were able to achieve sensitivity of 90.76%. The high sensitivity rate is indicative of the model's ability to accurately predict seizures, which can be critical for timely intervention. The low false prediction rate minimizes unnecessary interventions, thereby reducing the burden on patients and healthcare systems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/eng2.12918</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2084-7439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2577-8196
ispartof Engineering reports (Hoboken, N.J.), 2024-11, Vol.6 (11), p.n/a
issn 2577-8196
2577-8196
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_15a9e5d1bde6483683931535832762ca
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Accuracy
Artificial neural networks
Brain
Brain research
Classification
convolutional neural network (CNN)
Convulsions & seizures
Datasets
Deep learning
electroencephalogram
Electroencephalography
Epilepsy
Feature extraction
Machine learning
Neural networks
Noise prediction
Patients
Performance evaluation
predicting epileptic Seizures
Predictive control
random forest
Seizures
Signal classification
support vector machine (SVM)
Support vector machines
title Deep learning‐based seizure prediction using EEG signals: A comparative analysis of classification methods on the CHB‐MIT dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%E2%80%90based%20seizure%20prediction%20using%20EEG%20signals:%20A%20comparative%20analysis%20of%20classification%20methods%20on%20the%20CHB%E2%80%90MIT%20dataset&rft.jtitle=Engineering%20reports%20(Hoboken,%20N.J.)&rft.au=Esmaeilpour,%20Ali&rft.date=2024-11&rft.volume=6&rft.issue=11&rft.epage=n/a&rft.issn=2577-8196&rft.eissn=2577-8196&rft_id=info:doi/10.1002/eng2.12918&rft_dat=%3Cproquest_doaj_%3E3123590512%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4038-8712e997499a03c7911aac43ee1ca1d27b71cc06456b93811e1a34b9b21f17c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123590512&rft_id=info:pmid/&rfr_iscdi=true