Loading…
Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels
The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. Howeve...
Saved in:
Published in: | Fluids and barriers of the CNS 2022-11, Vol.19 (1), p.87-87, Article 87 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33 |
container_end_page | 87 |
container_issue | 1 |
container_start_page | 87 |
container_title | Fluids and barriers of the CNS |
container_volume | 19 |
creator | Linville, Raleigh M Sklar, Matthew B Grifno, Gabrielle N Nerenberg, Renée F Zhou, Justin Ye, Robert DeStefano, Jackson G Guo, Zhaobin Jha, Ria Jamieson, John J Zhao, Nan Searson, Peter C |
description | The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations. |
doi_str_mv | 10.1186/s12987-022-00377-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725115271</galeid><doaj_id>oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c</doaj_id><sourcerecordid>A725115271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</originalsourceid><addsrcrecordid>eNptkt-K1DAUxoso7jLuC3ghAUG8sGvStElzIyyDfxYWFJz7kCYnnQydZEzawX0PH9h0Zlx3xPai4ct3fknP-YriJcHXhLTsfSKVaHmJq6rEmHJekifFZYXrpmzz_tNH64viKqUNzk9dc8yq58UFZZRSJurL4tdqHQFK47bgkwteDWjrdAzg9y4Gn9URReinQY2QUA8eEPzcRUiz-R2yk9fjYaW8QaPr1yPanDRk7r3KsISCRe7b92VpILo9GNQNIZiyi8p51KkYHcTjqfvMhSG9KJ5ZNSS4On0XxerTx9XyS3n39fPt8uau1I2ox1Izi23dcdq2Bgg1nDVYA6cNMCW4xoIa0Aosw1ZY0ZCKtpSIVrAsaUXporg9Yk1QG7mLbqvivQzKyYMQYi9VHJ0eQJJGWQOi7rAStcJCEKwbxkEYxbUROrM-HFm7qduC0blvUQ1n0PMd79ayD3spGGVtJTLg7QkQw48J0ii3LmkYBuUhTElWnFZNTTiZ7_36H-smTDGP7uDiXDSU8b-uXuUfcN6GfK6eofKGVw0hTZVhi-L6P678GsgTCR6sy_pZwZtHBWtQw7hOYZjmiadzY3U05rmmFME-NINgOUdYHiMsc4TlIcJyLnr1uI0PJX8CS38DQ7nuCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737795367</pqid></control><display><type>article</type><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</creator><creatorcontrib>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</creatorcontrib><description>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</description><identifier>ISSN: 2045-8118</identifier><identifier>EISSN: 2045-8118</identifier><identifier>DOI: 10.1186/s12987-022-00377-1</identifier><identifier>PMID: 36333694</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain - blood supply ; Brain microvascular endothelial cells ; Cell culture ; Cell Differentiation - physiology ; Cells, Cultured ; Cytokines ; Cytoskeleton ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Extracellular matrix ; Fluorescence ; Gene Expression ; Genes ; Genotype & phenotype ; Homeostasis ; Induced pluripotent stem cells ; Induced Pluripotent Stem Cells - physiology ; Microenvironments ; Microvasculature ; Microvessels - metabolism ; Permeability ; Phenotypes ; Physiology ; Protein expression ; Shear stress ; Stem cells ; Three-dimensional models ; Tight Junctions ; Tissue culture ; Tissue engineering</subject><ispartof>Fluids and barriers of the CNS, 2022-11, Vol.19 (1), p.87-87, Article 87</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</citedby><cites>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737795367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linville, Raleigh M</creatorcontrib><creatorcontrib>Sklar, Matthew B</creatorcontrib><creatorcontrib>Grifno, Gabrielle N</creatorcontrib><creatorcontrib>Nerenberg, Renée F</creatorcontrib><creatorcontrib>Zhou, Justin</creatorcontrib><creatorcontrib>Ye, Robert</creatorcontrib><creatorcontrib>DeStefano, Jackson G</creatorcontrib><creatorcontrib>Guo, Zhaobin</creatorcontrib><creatorcontrib>Jha, Ria</creatorcontrib><creatorcontrib>Jamieson, John J</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Searson, Peter C</creatorcontrib><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><title>Fluids and barriers of the CNS</title><addtitle>Fluids Barriers CNS</addtitle><description>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</description><subject>Angiogenesis</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - blood supply</subject><subject>Brain microvascular endothelial cells</subject><subject>Cell culture</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Cytokines</subject><subject>Cytoskeleton</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Extracellular matrix</subject><subject>Fluorescence</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genotype & phenotype</subject><subject>Homeostasis</subject><subject>Induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Microenvironments</subject><subject>Microvasculature</subject><subject>Microvessels - metabolism</subject><subject>Permeability</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Protein expression</subject><subject>Shear stress</subject><subject>Stem cells</subject><subject>Three-dimensional models</subject><subject>Tight Junctions</subject><subject>Tissue culture</subject><subject>Tissue engineering</subject><issn>2045-8118</issn><issn>2045-8118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-K1DAUxoso7jLuC3ghAUG8sGvStElzIyyDfxYWFJz7kCYnnQydZEzawX0PH9h0Zlx3xPai4ct3fknP-YriJcHXhLTsfSKVaHmJq6rEmHJekifFZYXrpmzz_tNH64viKqUNzk9dc8yq58UFZZRSJurL4tdqHQFK47bgkwteDWjrdAzg9y4Gn9URReinQY2QUA8eEPzcRUiz-R2yk9fjYaW8QaPr1yPanDRk7r3KsISCRe7b92VpILo9GNQNIZiyi8p51KkYHcTjqfvMhSG9KJ5ZNSS4On0XxerTx9XyS3n39fPt8uau1I2ox1Izi23dcdq2Bgg1nDVYA6cNMCW4xoIa0Aosw1ZY0ZCKtpSIVrAsaUXporg9Yk1QG7mLbqvivQzKyYMQYi9VHJ0eQJJGWQOi7rAStcJCEKwbxkEYxbUROrM-HFm7qduC0blvUQ1n0PMd79ayD3spGGVtJTLg7QkQw48J0ii3LmkYBuUhTElWnFZNTTiZ7_36H-smTDGP7uDiXDSU8b-uXuUfcN6GfK6eofKGVw0hTZVhi-L6P678GsgTCR6sy_pZwZtHBWtQw7hOYZjmiadzY3U05rmmFME-NINgOUdYHiMsc4TlIcJyLnr1uI0PJX8CS38DQ7nuCQ</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>Linville, Raleigh M</creator><creator>Sklar, Matthew B</creator><creator>Grifno, Gabrielle N</creator><creator>Nerenberg, Renée F</creator><creator>Zhou, Justin</creator><creator>Ye, Robert</creator><creator>DeStefano, Jackson G</creator><creator>Guo, Zhaobin</creator><creator>Jha, Ria</creator><creator>Jamieson, John J</creator><creator>Zhao, Nan</creator><creator>Searson, Peter C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221105</creationdate><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><author>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - blood supply</topic><topic>Brain microvascular endothelial cells</topic><topic>Cell culture</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Cytokines</topic><topic>Cytoskeleton</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Extracellular matrix</topic><topic>Fluorescence</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genotype & phenotype</topic><topic>Homeostasis</topic><topic>Induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Microenvironments</topic><topic>Microvasculature</topic><topic>Microvessels - metabolism</topic><topic>Permeability</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Protein expression</topic><topic>Shear stress</topic><topic>Stem cells</topic><topic>Three-dimensional models</topic><topic>Tight Junctions</topic><topic>Tissue culture</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linville, Raleigh M</creatorcontrib><creatorcontrib>Sklar, Matthew B</creatorcontrib><creatorcontrib>Grifno, Gabrielle N</creatorcontrib><creatorcontrib>Nerenberg, Renée F</creatorcontrib><creatorcontrib>Zhou, Justin</creatorcontrib><creatorcontrib>Ye, Robert</creatorcontrib><creatorcontrib>DeStefano, Jackson G</creatorcontrib><creatorcontrib>Guo, Zhaobin</creatorcontrib><creatorcontrib>Jha, Ria</creatorcontrib><creatorcontrib>Jamieson, John J</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Searson, Peter C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fluids and barriers of the CNS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linville, Raleigh M</au><au>Sklar, Matthew B</au><au>Grifno, Gabrielle N</au><au>Nerenberg, Renée F</au><au>Zhou, Justin</au><au>Ye, Robert</au><au>DeStefano, Jackson G</au><au>Guo, Zhaobin</au><au>Jha, Ria</au><au>Jamieson, John J</au><au>Zhao, Nan</au><au>Searson, Peter C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</atitle><jtitle>Fluids and barriers of the CNS</jtitle><addtitle>Fluids Barriers CNS</addtitle><date>2022-11-05</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>87</spage><epage>87</epage><pages>87-87</pages><artnum>87</artnum><issn>2045-8118</issn><eissn>2045-8118</eissn><abstract>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36333694</pmid><doi>10.1186/s12987-022-00377-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-8118 |
ispartof | Fluids and barriers of the CNS, 2022-11, Vol.19 (1), p.87-87, Article 87 |
issn | 2045-8118 2045-8118 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c |
source | Publicly Available Content Database; PubMed Central |
subjects | Angiogenesis Blood-brain barrier Blood-Brain Barrier - metabolism Brain - blood supply Brain microvascular endothelial cells Cell culture Cell Differentiation - physiology Cells, Cultured Cytokines Cytoskeleton Endothelial cells Endothelial Cells - metabolism Endothelium Extracellular matrix Fluorescence Gene Expression Genes Genotype & phenotype Homeostasis Induced pluripotent stem cells Induced Pluripotent Stem Cells - physiology Microenvironments Microvasculature Microvessels - metabolism Permeability Phenotypes Physiology Protein expression Shear stress Stem cells Three-dimensional models Tight Junctions Tissue culture Tissue engineering |
title | Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20microenvironment%20regulates%20gene%20expression,%20function,%20and%20tight%20junction%20dynamics%20of%20iPSC-derived%20blood-brain%20barrier%20microvessels&rft.jtitle=Fluids%20and%20barriers%20of%20the%20CNS&rft.au=Linville,%20Raleigh%20M&rft.date=2022-11-05&rft.volume=19&rft.issue=1&rft.spage=87&rft.epage=87&rft.pages=87-87&rft.artnum=87&rft.issn=2045-8118&rft.eissn=2045-8118&rft_id=info:doi/10.1186/s12987-022-00377-1&rft_dat=%3Cgale_doaj_%3EA725115271%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737795367&rft_id=info:pmid/36333694&rft_galeid=A725115271&rfr_iscdi=true |