Loading…

Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels

The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. Howeve...

Full description

Saved in:
Bibliographic Details
Published in:Fluids and barriers of the CNS 2022-11, Vol.19 (1), p.87-87, Article 87
Main Authors: Linville, Raleigh M, Sklar, Matthew B, Grifno, Gabrielle N, Nerenberg, Renée F, Zhou, Justin, Ye, Robert, DeStefano, Jackson G, Guo, Zhaobin, Jha, Ria, Jamieson, John J, Zhao, Nan, Searson, Peter C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33
cites cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33
container_end_page 87
container_issue 1
container_start_page 87
container_title Fluids and barriers of the CNS
container_volume 19
creator Linville, Raleigh M
Sklar, Matthew B
Grifno, Gabrielle N
Nerenberg, Renée F
Zhou, Justin
Ye, Robert
DeStefano, Jackson G
Guo, Zhaobin
Jha, Ria
Jamieson, John J
Zhao, Nan
Searson, Peter C
description The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.
doi_str_mv 10.1186/s12987-022-00377-1
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725115271</galeid><doaj_id>oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c</doaj_id><sourcerecordid>A725115271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</originalsourceid><addsrcrecordid>eNptkt-K1DAUxoso7jLuC3ghAUG8sGvStElzIyyDfxYWFJz7kCYnnQydZEzawX0PH9h0Zlx3xPai4ct3fknP-YriJcHXhLTsfSKVaHmJq6rEmHJekifFZYXrpmzz_tNH64viKqUNzk9dc8yq58UFZZRSJurL4tdqHQFK47bgkwteDWjrdAzg9y4Gn9URReinQY2QUA8eEPzcRUiz-R2yk9fjYaW8QaPr1yPanDRk7r3KsISCRe7b92VpILo9GNQNIZiyi8p51KkYHcTjqfvMhSG9KJ5ZNSS4On0XxerTx9XyS3n39fPt8uau1I2ox1Izi23dcdq2Bgg1nDVYA6cNMCW4xoIa0Aosw1ZY0ZCKtpSIVrAsaUXporg9Yk1QG7mLbqvivQzKyYMQYi9VHJ0eQJJGWQOi7rAStcJCEKwbxkEYxbUROrM-HFm7qduC0blvUQ1n0PMd79ayD3spGGVtJTLg7QkQw48J0ii3LmkYBuUhTElWnFZNTTiZ7_36H-smTDGP7uDiXDSU8b-uXuUfcN6GfK6eofKGVw0hTZVhi-L6P678GsgTCR6sy_pZwZtHBWtQw7hOYZjmiadzY3U05rmmFME-NINgOUdYHiMsc4TlIcJyLnr1uI0PJX8CS38DQ7nuCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737795367</pqid></control><display><type>article</type><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</creator><creatorcontrib>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</creatorcontrib><description>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</description><identifier>ISSN: 2045-8118</identifier><identifier>EISSN: 2045-8118</identifier><identifier>DOI: 10.1186/s12987-022-00377-1</identifier><identifier>PMID: 36333694</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Angiogenesis ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain - blood supply ; Brain microvascular endothelial cells ; Cell culture ; Cell Differentiation - physiology ; Cells, Cultured ; Cytokines ; Cytoskeleton ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Extracellular matrix ; Fluorescence ; Gene Expression ; Genes ; Genotype &amp; phenotype ; Homeostasis ; Induced pluripotent stem cells ; Induced Pluripotent Stem Cells - physiology ; Microenvironments ; Microvasculature ; Microvessels - metabolism ; Permeability ; Phenotypes ; Physiology ; Protein expression ; Shear stress ; Stem cells ; Three-dimensional models ; Tight Junctions ; Tissue culture ; Tissue engineering</subject><ispartof>Fluids and barriers of the CNS, 2022-11, Vol.19 (1), p.87-87, Article 87</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</citedby><cites>FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737795367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linville, Raleigh M</creatorcontrib><creatorcontrib>Sklar, Matthew B</creatorcontrib><creatorcontrib>Grifno, Gabrielle N</creatorcontrib><creatorcontrib>Nerenberg, Renée F</creatorcontrib><creatorcontrib>Zhou, Justin</creatorcontrib><creatorcontrib>Ye, Robert</creatorcontrib><creatorcontrib>DeStefano, Jackson G</creatorcontrib><creatorcontrib>Guo, Zhaobin</creatorcontrib><creatorcontrib>Jha, Ria</creatorcontrib><creatorcontrib>Jamieson, John J</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Searson, Peter C</creatorcontrib><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><title>Fluids and barriers of the CNS</title><addtitle>Fluids Barriers CNS</addtitle><description>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</description><subject>Angiogenesis</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - blood supply</subject><subject>Brain microvascular endothelial cells</subject><subject>Cell culture</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Cytokines</subject><subject>Cytoskeleton</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Extracellular matrix</subject><subject>Fluorescence</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genotype &amp; phenotype</subject><subject>Homeostasis</subject><subject>Induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Microenvironments</subject><subject>Microvasculature</subject><subject>Microvessels - metabolism</subject><subject>Permeability</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Protein expression</subject><subject>Shear stress</subject><subject>Stem cells</subject><subject>Three-dimensional models</subject><subject>Tight Junctions</subject><subject>Tissue culture</subject><subject>Tissue engineering</subject><issn>2045-8118</issn><issn>2045-8118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-K1DAUxoso7jLuC3ghAUG8sGvStElzIyyDfxYWFJz7kCYnnQydZEzawX0PH9h0Zlx3xPai4ct3fknP-YriJcHXhLTsfSKVaHmJq6rEmHJekifFZYXrpmzz_tNH64viKqUNzk9dc8yq58UFZZRSJurL4tdqHQFK47bgkwteDWjrdAzg9y4Gn9URReinQY2QUA8eEPzcRUiz-R2yk9fjYaW8QaPr1yPanDRk7r3KsISCRe7b92VpILo9GNQNIZiyi8p51KkYHcTjqfvMhSG9KJ5ZNSS4On0XxerTx9XyS3n39fPt8uau1I2ox1Izi23dcdq2Bgg1nDVYA6cNMCW4xoIa0Aosw1ZY0ZCKtpSIVrAsaUXporg9Yk1QG7mLbqvivQzKyYMQYi9VHJ0eQJJGWQOi7rAStcJCEKwbxkEYxbUROrM-HFm7qduC0blvUQ1n0PMd79ayD3spGGVtJTLg7QkQw48J0ii3LmkYBuUhTElWnFZNTTiZ7_36H-smTDGP7uDiXDSU8b-uXuUfcN6GfK6eofKGVw0hTZVhi-L6P678GsgTCR6sy_pZwZtHBWtQw7hOYZjmiadzY3U05rmmFME-NINgOUdYHiMsc4TlIcJyLnr1uI0PJX8CS38DQ7nuCQ</recordid><startdate>20221105</startdate><enddate>20221105</enddate><creator>Linville, Raleigh M</creator><creator>Sklar, Matthew B</creator><creator>Grifno, Gabrielle N</creator><creator>Nerenberg, Renée F</creator><creator>Zhou, Justin</creator><creator>Ye, Robert</creator><creator>DeStefano, Jackson G</creator><creator>Guo, Zhaobin</creator><creator>Jha, Ria</creator><creator>Jamieson, John J</creator><creator>Zhao, Nan</creator><creator>Searson, Peter C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221105</creationdate><title>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</title><author>Linville, Raleigh M ; Sklar, Matthew B ; Grifno, Gabrielle N ; Nerenberg, Renée F ; Zhou, Justin ; Ye, Robert ; DeStefano, Jackson G ; Guo, Zhaobin ; Jha, Ria ; Jamieson, John J ; Zhao, Nan ; Searson, Peter C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - blood supply</topic><topic>Brain microvascular endothelial cells</topic><topic>Cell culture</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Cytokines</topic><topic>Cytoskeleton</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Extracellular matrix</topic><topic>Fluorescence</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genotype &amp; phenotype</topic><topic>Homeostasis</topic><topic>Induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Microenvironments</topic><topic>Microvasculature</topic><topic>Microvessels - metabolism</topic><topic>Permeability</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Protein expression</topic><topic>Shear stress</topic><topic>Stem cells</topic><topic>Three-dimensional models</topic><topic>Tight Junctions</topic><topic>Tissue culture</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linville, Raleigh M</creatorcontrib><creatorcontrib>Sklar, Matthew B</creatorcontrib><creatorcontrib>Grifno, Gabrielle N</creatorcontrib><creatorcontrib>Nerenberg, Renée F</creatorcontrib><creatorcontrib>Zhou, Justin</creatorcontrib><creatorcontrib>Ye, Robert</creatorcontrib><creatorcontrib>DeStefano, Jackson G</creatorcontrib><creatorcontrib>Guo, Zhaobin</creatorcontrib><creatorcontrib>Jha, Ria</creatorcontrib><creatorcontrib>Jamieson, John J</creatorcontrib><creatorcontrib>Zhao, Nan</creatorcontrib><creatorcontrib>Searson, Peter C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fluids and barriers of the CNS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linville, Raleigh M</au><au>Sklar, Matthew B</au><au>Grifno, Gabrielle N</au><au>Nerenberg, Renée F</au><au>Zhou, Justin</au><au>Ye, Robert</au><au>DeStefano, Jackson G</au><au>Guo, Zhaobin</au><au>Jha, Ria</au><au>Jamieson, John J</au><au>Zhao, Nan</au><au>Searson, Peter C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels</atitle><jtitle>Fluids and barriers of the CNS</jtitle><addtitle>Fluids Barriers CNS</addtitle><date>2022-11-05</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>87</spage><epage>87</epage><pages>87-87</pages><artnum>87</artnum><issn>2045-8118</issn><eissn>2045-8118</eissn><abstract>The blood-brain barrier (BBB) plays a pivotal role in brain health and disease. In the BBB, brain microvascular endothelial cells (BMECs) are connected by tight junctions which regulate paracellular transport, and express specialized transporter systems which regulate transcellular transport. However, existing in vitro models of the BBB display variable accuracy across a wide range of characteristics including gene/protein expression and barrier function. Here, we use an isogenic family of fluorescently-labeled iPSC-derived BMEC-like cells (iBMECs) and brain pericyte-like cells (iPCs) within two-dimensional confluent monolayers (2D) and three-dimensional (3D) tissue-engineered microvessels to explore how 3D microenvironment regulates gene expression and function of the in vitro BBB. We show that 3D microenvironment (shear stress, cell-ECM interactions, and cylindrical geometry) increases BBB phenotype and endothelial identity, and alters angiogenic and cytokine responses in synergy with pericyte co-culture. Tissue-engineered microvessels incorporating junction-labeled iBMECs enable study of the real-time dynamics of tight junctions during homeostasis and in response to physical and chemical perturbations.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>36333694</pmid><doi>10.1186/s12987-022-00377-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-8118
ispartof Fluids and barriers of the CNS, 2022-11, Vol.19 (1), p.87-87, Article 87
issn 2045-8118
2045-8118
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_15afde94b0a94a09910c567e9da7cd9c
source Publicly Available Content Database; PubMed Central
subjects Angiogenesis
Blood-brain barrier
Blood-Brain Barrier - metabolism
Brain - blood supply
Brain microvascular endothelial cells
Cell culture
Cell Differentiation - physiology
Cells, Cultured
Cytokines
Cytoskeleton
Endothelial cells
Endothelial Cells - metabolism
Endothelium
Extracellular matrix
Fluorescence
Gene Expression
Genes
Genotype & phenotype
Homeostasis
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - physiology
Microenvironments
Microvasculature
Microvessels - metabolism
Permeability
Phenotypes
Physiology
Protein expression
Shear stress
Stem cells
Three-dimensional models
Tight Junctions
Tissue culture
Tissue engineering
title Three-dimensional microenvironment regulates gene expression, function, and tight junction dynamics of iPSC-derived blood-brain barrier microvessels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20microenvironment%20regulates%20gene%20expression,%20function,%20and%20tight%20junction%20dynamics%20of%20iPSC-derived%20blood-brain%20barrier%20microvessels&rft.jtitle=Fluids%20and%20barriers%20of%20the%20CNS&rft.au=Linville,%20Raleigh%20M&rft.date=2022-11-05&rft.volume=19&rft.issue=1&rft.spage=87&rft.epage=87&rft.pages=87-87&rft.artnum=87&rft.issn=2045-8118&rft.eissn=2045-8118&rft_id=info:doi/10.1186/s12987-022-00377-1&rft_dat=%3Cgale_doaj_%3EA725115271%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-c6f0f4b7388de13d7650ce735e6a97c093decaef60f9f951238319896ef6ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737795367&rft_id=info:pmid/36333694&rft_galeid=A725115271&rfr_iscdi=true