Loading…
Progesterone modulates the immune microenvironment to suppress ovalbumin-induced airway inflammation by inhibiting NETosis
Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic ast...
Saved in:
Published in: | Scientific reports 2024-07, Vol.14 (1), p.17241-21, Article 17241 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45
+
T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4
+
T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45
+
immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44
+
T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-66439-6 |