Loading…

Bio-Inspired Self-Healing, Shear-Thinning, and Adhesive Gallic Acid-Conjugated Chitosan/Carbon Black Composite Hydrogels as Suture Support Materials

The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Switzerland), 2023-11, Vol.8 (7), p.542
Main Authors: Shin, Hyun Ho, Ryu, Ji Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive materials could be used to support suturing in surgical procedures, many complications caused by leakage from the anastomosis sites could be prevented. In this study, we have developed self-healing, shear-thinning, tissue-adhesive, carbon-black-containing, gallic acid-conjugated chitosan (CB/Chi-gallol) hydrogels as sealing materials to be used with suturing. The addition of CB into Chi-gallol solution resulted in the formation of a crosslinked hydrogel with instantaneous solidification. In addition, these CB/Chi-gallol hydrogels showed enhancement of the elastic modulus (G') values with increased CB concentration. Furthermore, these hydrogels exhibited excellent self-healing, shear-thinning, and tissue-adhesive properties. Notably, the hydrogels successfully sealed the incision site with suturing, resulting in a significant increase in the bursting pressure. The proposed self-healing and adhesive hydrogels are potentially useful in versatile biomedical applications, particularly as suture support materials for surgical procedures.
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics8070542