Loading…
Pilot Studies of the Unique Highland Palsa Mire in Western Sayan (Tuva Republic, Russian Federation)
In contrast to the well-studied West Siberian sector of frozen bogs in the Russian Arctic, the frozen mound bogs (so-called “palsas”) on the highlands of Southern Siberia have not yet been studied, but they are suspected to be even more sensitive to ongoing climate change. This article provides the...
Saved in:
Published in: | Atmosphere 2022-01, Vol.13 (1), p.32 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to the well-studied West Siberian sector of frozen bogs in the Russian Arctic, the frozen mound bogs (so-called “palsas”) on the highlands of Southern Siberia have not yet been studied, but they are suspected to be even more sensitive to ongoing climate change. This article provides the pilot study on palsa mire Kara-Sug in the highland areas of Western Sayan mountain system, Tuva Republic. The study focuses on the current state of palsa mire and surrounding landscapes, providing wide range of ecological characteristics while describing ongoing transformations of natural landscapes under a changing climate. The study used a variety of field and laboratory methods: the integrated landscape-ecological approach, the study of peat deposits, geobotanical analysis, and modern analysis of the chemical composition of water, peat, and soils. The study shows that highland palsa mires are distinguished by their compactness and high variety of cryogenic landforms leading to high floristic and ecosystem diversity compared with lowland palsa mires. This information brings new insights and contributes to a better understanding of extrazonal highland palsa mires, which remain a “white spot” in the global environmental sciences. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos13010032 |