Loading…
Personal Care and Cosmetic Products as a Potential Source of Environmental Contamination by Microplastics in a Densely Populated Asian City
The prevalence of microplastics in the environment has become a major global conservation issue. One primary source of environmental microplastics is personal care and cosmetic products (PCCPs) containing microbeads. The market availability of PCCPs containing microbeads and the level of contaminati...
Saved in:
Published in: | Frontiers in Marine Science 2021-06, Vol.8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prevalence of microplastics in the environment has become a major global conservation issue. One primary source of environmental microplastics is personal care and cosmetic products (PCCPs) containing microbeads. The market availability of PCCPs containing microbeads and the level of contamination of coastal sediments by microplastics was studied in one of the most densely populated cities in the world, Macao in China. We found that PCCPs containing microbeads are still widely available for sale in the region, with over 70% of surveyed PCCPs containing at least one type of microbeads as an ingredient, with polyethylene (PE) being the most common one. In an estimate, the use of PCCPs in the territory may release over 37 billion microbeads per year into the environment via wastewater treatment plants. The density of microplastics in coastal sediments varied between 259 and 1,743 items/L of sediment, amongst the highest reported in the world. The fraction of < 1 mm was the most abundant, representing an average of 98.6% of the total, and correlated positively with the abundance of larger sized fragments. The results show that although environmental pollution with microplastics released from PCCPs usage is significant, other sources, namely fragmentation of larger plastic debris, likely contribute more to the issue. The study highlights the magnitude of the problem at a local level and suggests possible mitigating strategies. |
---|---|
ISSN: | 2296-7745 2296-7745 |
DOI: | 10.3389/fmars.2021.683482 |