Loading…

ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III

A tract (or asymptotic tract) of a real function u harmonic and nonconstant in the complex plane C is one of the n_c components of the set {z:u(z)≠c}, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if u(z) is an entire ha...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Mathematics and Mathematical Sciences 1996, Vol.1996 (4), p.633-636
Main Authors: Barth, Karl F., Brannan, David A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 636
container_issue 4
container_start_page 633
container_title International Journal of Mathematics and Mathematical Sciences
container_volume 1996
creator Barth, Karl F.
Brannan, David A.
description A tract (or asymptotic tract) of a real function u harmonic and nonconstant in the complex plane C is one of the n_c components of the set {z:u(z)≠c}, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if u(z) is an entire harmonic polynomial of degree n, if the critical points of any of its analytic completions f lie on the level sets τ_□={z:u(z)=c_□}, where 1≤ □ ≤p and p ≤ n-1, and if the total order of all the critical points of f on τ_□ is denoted by σ_j, then (The equation is abbreviated).
doi_str_mv 10.1155/S0161171296000890
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_15f63d438b1748d9b1d0a7ac453574a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161024001_199612_201612020027_201612020027_633_636</airiti_id><doaj_id>oai_doaj_org_article_15f63d438b1748d9b1d0a7ac453574a1</doaj_id><sourcerecordid>28621577</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3210-873da40c22b8b7edfaec767343ffd56222d993a085add50c992c2c6c138ffa633</originalsourceid><addsrcrecordid>eNplUE1Lw0AQXUTB-vEDvPXkRaIzs9mvYwnWBmojNj14Wra7iaS0RjftwX9vakUQD8Mw7715wzzGrhBuEYW4mwNKRIVkJABoA0dsgFKrBFISx2ywp5M9f8rOum4FgJpIDNjNaP7y-FQWZZ4Ny-dRVs6HxXg4GT0_FrMeGi9mWZkXs_kwz_MLdlK7dVdd_vRzthjfl9kkmRYPeTaaJo4TQqIVDy4FT7TUS1WF2lVeScVTXtdBSCIKxnAHWrgQBHhjyJOXHrmuayc5P2f5wTe0bmXfY7Nx8dO2rrHfQBtfrYvbxq8ri6KWPKRcL1GlOpglBnDK-VRwoVKHvdf1wes9th-7qtvaTdP5ar12b1W76yxpSSiU6oV4EPrYdl2s6t_DCHYfsf0Xcb8zPey4Jjbbxq7aXXzrk7FPtNcCpX3OFo2RSPYbIiAAUn-H_uW-JP8Cbvd8GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28621577</pqid></control><display><type>article</type><title>ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III</title><source>Wiley Open Access</source><creator>Barth, Karl F. ; Brannan, David A.</creator><creatorcontrib>Barth, Karl F. ; Brannan, David A.</creatorcontrib><description>A tract (or asymptotic tract) of a real function u harmonic and nonconstant in the complex plane C is one of the n_c components of the set {z:u(z)≠c}, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if u(z) is an entire harmonic polynomial of degree n, if the critical points of any of its analytic completions f lie on the level sets τ_□={z:u(z)=c_□}, where 1≤ □ ≤p and p ≤ n-1, and if the total order of all the critical points of f on τ_□ is denoted by σ_j, then (The equation is abbreviated).</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S0161171296000890</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><subject>Asymptotic tracts ; harmonic functions</subject><ispartof>International Journal of Mathematics and Mathematical Sciences, 1996, Vol.1996 (4), p.633-636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Barth, Karl F.</creatorcontrib><creatorcontrib>Brannan, David A.</creatorcontrib><title>ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III</title><title>International Journal of Mathematics and Mathematical Sciences</title><description>A tract (or asymptotic tract) of a real function u harmonic and nonconstant in the complex plane C is one of the n_c components of the set {z:u(z)≠c}, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if u(z) is an entire harmonic polynomial of degree n, if the critical points of any of its analytic completions f lie on the level sets τ_□={z:u(z)=c_□}, where 1≤ □ ≤p and p ≤ n-1, and if the total order of all the critical points of f on τ_□ is denoted by σ_j, then (The equation is abbreviated).</description><subject>Asymptotic tracts</subject><subject>harmonic functions</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUE1Lw0AQXUTB-vEDvPXkRaIzs9mvYwnWBmojNj14Wra7iaS0RjftwX9vakUQD8Mw7715wzzGrhBuEYW4mwNKRIVkJABoA0dsgFKrBFISx2ywp5M9f8rOum4FgJpIDNjNaP7y-FQWZZ4Ny-dRVs6HxXg4GT0_FrMeGi9mWZkXs_kwz_MLdlK7dVdd_vRzthjfl9kkmRYPeTaaJo4TQqIVDy4FT7TUS1WF2lVeScVTXtdBSCIKxnAHWrgQBHhjyJOXHrmuayc5P2f5wTe0bmXfY7Nx8dO2rrHfQBtfrYvbxq8ri6KWPKRcL1GlOpglBnDK-VRwoVKHvdf1wes9th-7qtvaTdP5ar12b1W76yxpSSiU6oV4EPrYdl2s6t_DCHYfsf0Xcb8zPey4Jjbbxq7aXXzrk7FPtNcCpX3OFo2RSPYbIiAAUn-H_uW-JP8Cbvd8GQ</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Barth, Karl F.</creator><creator>Brannan, David A.</creator><general>Hindawi Limiteds</general><general>Hindawi Limited</general><scope>188</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>1996</creationdate><title>ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III</title><author>Barth, Karl F. ; Brannan, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3210-873da40c22b8b7edfaec767343ffd56222d993a085add50c992c2c6c138ffa633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Asymptotic tracts</topic><topic>harmonic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barth, Karl F.</creatorcontrib><creatorcontrib>Brannan, David A.</creatorcontrib><collection>Airiti Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barth, Karl F.</au><au>Brannan, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III</atitle><jtitle>International Journal of Mathematics and Mathematical Sciences</jtitle><date>1996</date><risdate>1996</risdate><volume>1996</volume><issue>4</issue><spage>633</spage><epage>636</epage><pages>633-636</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>A tract (or asymptotic tract) of a real function u harmonic and nonconstant in the complex plane C is one of the n_c components of the set {z:u(z)≠c}, and the order of a tract is the number of non-homotopic curves from any given point to ∞ in the tract. The authors prove that if u(z) is an entire harmonic polynomial of degree n, if the critical points of any of its analytic completions f lie on the level sets τ_□={z:u(z)=c_□}, where 1≤ □ ≤p and p ≤ n-1, and if the total order of all the critical points of f on τ_□ is denoted by σ_j, then (The equation is abbreviated).</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/S0161171296000890</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International Journal of Mathematics and Mathematical Sciences, 1996, Vol.1996 (4), p.633-636
issn 0161-1712
1687-0425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_15f63d438b1748d9b1d0a7ac453574a1
source Wiley Open Access
subjects Asymptotic tracts
harmonic functions
title ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS III
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20TRACTS%20OF%20HARMONIC%20FUNCTIONS%20III&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Mathematical%20Sciences&rft.au=Barth,%20Karl%20F.&rft.date=1996&rft.volume=1996&rft.issue=4&rft.spage=633&rft.epage=636&rft.pages=633-636&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S0161171296000890&rft_dat=%3Cproquest_doaj_%3E28621577%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3210-873da40c22b8b7edfaec767343ffd56222d993a085add50c992c2c6c138ffa633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28621577&rft_id=info:pmid/&rft_airiti_id=P20161024001_199612_201612020027_201612020027_633_636&rfr_iscdi=true