Loading…

The task of multi-criteria optimization of metal frame structures

Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constrai...

Full description

Saved in:
Bibliographic Details
Main Author: Alpatov, Vadim
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3
cites cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3
container_end_page
container_issue
container_start_page 7
container_title
container_volume 117
creator Alpatov, Vadim
description Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.
doi_str_mv 10.1051/matecconf/201711700007
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e</doaj_id><sourcerecordid>2039274119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gix4XptJdpPNsRT_FApeKngLSTarqbtNTbIH_fTGVkrnMsPM4_eGh9At4HvANcwHlawxftfNCQYOwHEufoEmhDAoCWVvl2fzNZrFuM0KoIJjwSdosfmwRVLxs_BdMYx9cqUJLtngVOH3yQ3uRyXnd4ezTaovuqAGW8QURpPGYOMNuupUH-3sv0_R6-PDZvlcrl-eVsvFujTZK5VAgFVWgNGUMZ5fN0I0uLFADCNEa4KZJoxTxlmtOlwbomvWkZZCK3TbKjpFqyO39Wor98ENKnxLr5w8LHx4lyokZ3orgQE13GCBmaigsYo3utU6c4WoobaZdXdk7YP_Gm1McuvHsMvvS4KpILwCEFnFjioTfIzBdidXwPIvfXlKX56nT38BrgB4_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2039274119</pqid></control><display><type>conference_proceeding</type><title>The task of multi-criteria optimization of metal frame structures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Alpatov, Vadim</creator><contributor>Zbiciak, A. ; Gajewski, M. ; Mitew-Czajewska, M. ; Krzemiński, M. ; Jemioło, S.</contributor><creatorcontrib>Alpatov, Vadim ; Zbiciak, A. ; Gajewski, M. ; Mitew-Czajewska, M. ; Krzemiński, M. ; Jemioło, S.</creatorcontrib><description>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201711700007</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Composite functions ; Criteria ; Deformation ; Frame structures ; Moments of inertia ; Optimization ; Parameters ; Stiffness</subject><ispartof>MATEC Web of Conferences, 2017, Vol.117, p.7</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</citedby><cites>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2039274119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Zbiciak, A.</contributor><contributor>Gajewski, M.</contributor><contributor>Mitew-Czajewska, M.</contributor><contributor>Krzemiński, M.</contributor><contributor>Jemioło, S.</contributor><creatorcontrib>Alpatov, Vadim</creatorcontrib><title>The task of multi-criteria optimization of metal frame structures</title><title>MATEC Web of Conferences</title><description>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</description><subject>Composite functions</subject><subject>Criteria</subject><subject>Deformation</subject><subject>Frame structures</subject><subject>Moments of inertia</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Stiffness</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gix4XptJdpPNsRT_FApeKngLSTarqbtNTbIH_fTGVkrnMsPM4_eGh9At4HvANcwHlawxftfNCQYOwHEufoEmhDAoCWVvl2fzNZrFuM0KoIJjwSdosfmwRVLxs_BdMYx9cqUJLtngVOH3yQ3uRyXnd4ezTaovuqAGW8QURpPGYOMNuupUH-3sv0_R6-PDZvlcrl-eVsvFujTZK5VAgFVWgNGUMZ5fN0I0uLFADCNEa4KZJoxTxlmtOlwbomvWkZZCK3TbKjpFqyO39Wor98ENKnxLr5w8LHx4lyokZ3orgQE13GCBmaigsYo3utU6c4WoobaZdXdk7YP_Gm1McuvHsMvvS4KpILwCEFnFjioTfIzBdidXwPIvfXlKX56nT38BrgB4_w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Alpatov, Vadim</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>The task of multi-criteria optimization of metal frame structures</title><author>Alpatov, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Composite functions</topic><topic>Criteria</topic><topic>Deformation</topic><topic>Frame structures</topic><topic>Moments of inertia</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alpatov, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alpatov, Vadim</au><au>Zbiciak, A.</au><au>Gajewski, M.</au><au>Mitew-Czajewska, M.</au><au>Krzemiński, M.</au><au>Jemioło, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The task of multi-criteria optimization of metal frame structures</atitle><btitle>MATEC Web of Conferences</btitle><date>2017-01-01</date><risdate>2017</risdate><volume>117</volume><spage>7</spage><pages>7-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201711700007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC Web of Conferences, 2017, Vol.117, p.7
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Composite functions
Criteria
Deformation
Frame structures
Moments of inertia
Optimization
Parameters
Stiffness
title The task of multi-criteria optimization of metal frame structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20task%20of%20multi-criteria%20optimization%20of%20metal%20frame%20structures&rft.btitle=MATEC%20Web%20of%20Conferences&rft.au=Alpatov,%20Vadim&rft.date=2017-01-01&rft.volume=117&rft.spage=7&rft.pages=7-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201711700007&rft_dat=%3Cproquest_doaj_%3E2039274119%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039274119&rft_id=info:pmid/&rfr_iscdi=true