Loading…
The task of multi-criteria optimization of metal frame structures
Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constrai...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3 |
container_end_page | |
container_issue | |
container_start_page | 7 |
container_title | |
container_volume | 117 |
creator | Alpatov, Vadim |
description | Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces. |
doi_str_mv | 10.1051/matecconf/201711700007 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e</doaj_id><sourcerecordid>2039274119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gix4XptJdpPNsRT_FApeKngLSTarqbtNTbIH_fTGVkrnMsPM4_eGh9At4HvANcwHlawxftfNCQYOwHEufoEmhDAoCWVvl2fzNZrFuM0KoIJjwSdosfmwRVLxs_BdMYx9cqUJLtngVOH3yQ3uRyXnd4ezTaovuqAGW8QURpPGYOMNuupUH-3sv0_R6-PDZvlcrl-eVsvFujTZK5VAgFVWgNGUMZ5fN0I0uLFADCNEa4KZJoxTxlmtOlwbomvWkZZCK3TbKjpFqyO39Wor98ENKnxLr5w8LHx4lyokZ3orgQE13GCBmaigsYo3utU6c4WoobaZdXdk7YP_Gm1McuvHsMvvS4KpILwCEFnFjioTfIzBdidXwPIvfXlKX56nT38BrgB4_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2039274119</pqid></control><display><type>conference_proceeding</type><title>The task of multi-criteria optimization of metal frame structures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Alpatov, Vadim</creator><contributor>Zbiciak, A. ; Gajewski, M. ; Mitew-Czajewska, M. ; Krzemiński, M. ; Jemioło, S.</contributor><creatorcontrib>Alpatov, Vadim ; Zbiciak, A. ; Gajewski, M. ; Mitew-Czajewska, M. ; Krzemiński, M. ; Jemioło, S.</creatorcontrib><description>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201711700007</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Composite functions ; Criteria ; Deformation ; Frame structures ; Moments of inertia ; Optimization ; Parameters ; Stiffness</subject><ispartof>MATEC Web of Conferences, 2017, Vol.117, p.7</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</citedby><cites>FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2039274119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Zbiciak, A.</contributor><contributor>Gajewski, M.</contributor><contributor>Mitew-Czajewska, M.</contributor><contributor>Krzemiński, M.</contributor><contributor>Jemioło, S.</contributor><creatorcontrib>Alpatov, Vadim</creatorcontrib><title>The task of multi-criteria optimization of metal frame structures</title><title>MATEC Web of Conferences</title><description>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</description><subject>Composite functions</subject><subject>Criteria</subject><subject>Deformation</subject><subject>Frame structures</subject><subject>Moments of inertia</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Stiffness</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gix4XptJdpPNsRT_FApeKngLSTarqbtNTbIH_fTGVkrnMsPM4_eGh9At4HvANcwHlawxftfNCQYOwHEufoEmhDAoCWVvl2fzNZrFuM0KoIJjwSdosfmwRVLxs_BdMYx9cqUJLtngVOH3yQ3uRyXnd4ezTaovuqAGW8QURpPGYOMNuupUH-3sv0_R6-PDZvlcrl-eVsvFujTZK5VAgFVWgNGUMZ5fN0I0uLFADCNEa4KZJoxTxlmtOlwbomvWkZZCK3TbKjpFqyO39Wor98ENKnxLr5w8LHx4lyokZ3orgQE13GCBmaigsYo3utU6c4WoobaZdXdk7YP_Gm1McuvHsMvvS4KpILwCEFnFjioTfIzBdidXwPIvfXlKX56nT38BrgB4_w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Alpatov, Vadim</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>The task of multi-criteria optimization of metal frame structures</title><author>Alpatov, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Composite functions</topic><topic>Criteria</topic><topic>Deformation</topic><topic>Frame structures</topic><topic>Moments of inertia</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alpatov, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals(OpenAccess)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alpatov, Vadim</au><au>Zbiciak, A.</au><au>Gajewski, M.</au><au>Mitew-Czajewska, M.</au><au>Krzemiński, M.</au><au>Jemioło, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The task of multi-criteria optimization of metal frame structures</atitle><btitle>MATEC Web of Conferences</btitle><date>2017-01-01</date><risdate>2017</risdate><volume>117</volume><spage>7</spage><pages>7-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>Optimal design of a frame structure with a specified geometric scheme consists in finding control parameters that provide the highest or lowest value of composite functions which present some quality criteria. Searching for optimal parameters is related to a number of design and calculation constraints. When it is necessary to vary a geometrical scheme, node coordinates are also considered as unknown varied parameters that affect the quality criteria. When designing frames with a specified scheme, the volume of material is typically the primary criterion for solving an optimization task and is written as a function of control parameters and state settings. In problem specification it is also important to reduce the deformation of the system. This is accomplished by introducing an additional criterion -maximum moments of inertia of the sections of the system. There is a two-phase design and calculation model existing in design practice now. In the first stage, the work is based on the experience or existing prototype. On their basis stiffness of the bars is assigned, and then a load vector is calculated. In the second stage, the sections are chosen according to known forces.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201711700007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2261-236X |
ispartof | MATEC Web of Conferences, 2017, Vol.117, p.7 |
issn | 2261-236X 2274-7214 2261-236X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1613c7c09069418ea78bdbb5af99515e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Composite functions Criteria Deformation Frame structures Moments of inertia Optimization Parameters Stiffness |
title | The task of multi-criteria optimization of metal frame structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20task%20of%20multi-criteria%20optimization%20of%20metal%20frame%20structures&rft.btitle=MATEC%20Web%20of%20Conferences&rft.au=Alpatov,%20Vadim&rft.date=2017-01-01&rft.volume=117&rft.spage=7&rft.pages=7-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201711700007&rft_dat=%3Cproquest_doaj_%3E2039274119%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-12164e91cb3667051c99808e12c622bb206b26736765af05c2b56f2d31d9bdda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2039274119&rft_id=info:pmid/&rfr_iscdi=true |