Loading…
Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices
Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular...
Saved in:
Published in: | International journal of molecular sciences 2024-04, Vol.25 (7), p.4127 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular behaviors, signaling axes, and clinical prognosis. Particularly, physical traits of BCs play an important role; however, a panoramic view from this perspective toward clinical practices remains lacking. In this review, we describe the most typical five physical traits of BCs, and comprehensively summarize their roles in molecular signaling axes and corresponding major determinants. Moreover, establishing the recent observed contribution of condensate physics on clinical therapeutics, we illustrate next-generation medical strategies by targeting condensate physics. Finally, the challenges and opportunities for future medical development along with the rapid scientific and technological advances are highlighted. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25074127 |