Loading…
Predicting plant disease epidemics using boosted regression trees
Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar...
Saved in:
Published in: | Infectious disease modelling 2024-12, Vol.9 (4), p.1138-1146 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3 |
container_end_page | 1146 |
container_issue | 4 |
container_start_page | 1138 |
container_title | Infectious disease modelling |
container_volume | 9 |
creator | Peng, Chun Zhang, Xingyue Wang, Weiming |
description | Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good. |
doi_str_mv | 10.1016/j.idm.2024.06.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468042724000885</els_id><doaj_id>oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d</doaj_id><sourcerecordid>3082310251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</originalsourceid><addsrcrecordid>eNp9kU1rVDEUhoMotoz9AW7kLt3M7cnHzSS4kFLUFgq60HXIx7ljhntvxiRT8N-bcWppNwZCDjnveRLel5C3FHoKVF7u-hjmngETPcgeQL4g50xItQbBNi-f1GfkopQdAFDFNsDFa3LGNTDG9OacXH3LGKKvcdl2-8kutQuxoC3Y4T4GnKMv3aEcuy6lUjF0GbcZS4lp6WpGLG_Iq9FOBS8ezhX58fnT9-ub9d3XL7fXV3drLwDqWgs7oAhAufJixAGE0xYGzUXAoJCCpkoHqa1vS0lOuQsOrHSCu43ljq_I7Ykbkt2ZfY6zzb9NstH8vUh5a2yu0U9oqOSWI4wDUyiABjW4caBaIbjRex0a6-OJtT-4GYPHpWY7PYM-7yzxp9mme0MpGzhre0XePxBy-nXAUs0ci8epWYjpUAwHxTgFNtAmpSepz6mUjOPjOxTMMUqzMy1Kc4zSgDQtyjbz7ukHHyf-BdcEH04CbJbfR8ym-IiLb2Fm9LV5Ev-D_wO8Ea-k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082310251</pqid></control><display><type>article</type><title>Predicting plant disease epidemics using boosted regression trees</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</creator><creatorcontrib>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</creatorcontrib><description>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</description><identifier>ISSN: 2468-0427</identifier><identifier>ISSN: 2468-2152</identifier><identifier>EISSN: 2468-0427</identifier><identifier>DOI: 10.1016/j.idm.2024.06.006</identifier><identifier>PMID: 39022297</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Boosted regression trees ; Plant disease epidemics ; Scalar-on-function model</subject><ispartof>Infectious disease modelling, 2024-12, Vol.9 (4), p.1138-1146</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</cites><orcidid>0000-0002-2144-890X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2468042724000885$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39022297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Chun</creatorcontrib><creatorcontrib>Zhang, Xingyue</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><title>Predicting plant disease epidemics using boosted regression trees</title><title>Infectious disease modelling</title><addtitle>Infect Dis Model</addtitle><description>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</description><subject>Boosted regression trees</subject><subject>Plant disease epidemics</subject><subject>Scalar-on-function model</subject><issn>2468-0427</issn><issn>2468-2152</issn><issn>2468-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1rVDEUhoMotoz9AW7kLt3M7cnHzSS4kFLUFgq60HXIx7ljhntvxiRT8N-bcWppNwZCDjnveRLel5C3FHoKVF7u-hjmngETPcgeQL4g50xItQbBNi-f1GfkopQdAFDFNsDFa3LGNTDG9OacXH3LGKKvcdl2-8kutQuxoC3Y4T4GnKMv3aEcuy6lUjF0GbcZS4lp6WpGLG_Iq9FOBS8ezhX58fnT9-ub9d3XL7fXV3drLwDqWgs7oAhAufJixAGE0xYGzUXAoJCCpkoHqa1vS0lOuQsOrHSCu43ljq_I7Ykbkt2ZfY6zzb9NstH8vUh5a2yu0U9oqOSWI4wDUyiABjW4caBaIbjRex0a6-OJtT-4GYPHpWY7PYM-7yzxp9mme0MpGzhre0XePxBy-nXAUs0ci8epWYjpUAwHxTgFNtAmpSepz6mUjOPjOxTMMUqzMy1Kc4zSgDQtyjbz7ukHHyf-BdcEH04CbJbfR8ym-IiLb2Fm9LV5Ev-D_wO8Ea-k</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Peng, Chun</creator><creator>Zhang, Xingyue</creator><creator>Wang, Weiming</creator><general>Elsevier B.V</general><general>KeAi Publishing</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2144-890X</orcidid></search><sort><creationdate>20241201</creationdate><title>Predicting plant disease epidemics using boosted regression trees</title><author>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boosted regression trees</topic><topic>Plant disease epidemics</topic><topic>Scalar-on-function model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Chun</creatorcontrib><creatorcontrib>Zhang, Xingyue</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Infectious disease modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Chun</au><au>Zhang, Xingyue</au><au>Wang, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting plant disease epidemics using boosted regression trees</atitle><jtitle>Infectious disease modelling</jtitle><addtitle>Infect Dis Model</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>1138</spage><epage>1146</epage><pages>1138-1146</pages><issn>2468-0427</issn><issn>2468-2152</issn><eissn>2468-0427</eissn><abstract>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>39022297</pmid><doi>10.1016/j.idm.2024.06.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2144-890X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2468-0427 |
ispartof | Infectious disease modelling, 2024-12, Vol.9 (4), p.1138-1146 |
issn | 2468-0427 2468-2152 2468-0427 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d |
source | ScienceDirect; PubMed Central |
subjects | Boosted regression trees Plant disease epidemics Scalar-on-function model |
title | Predicting plant disease epidemics using boosted regression trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20plant%20disease%20epidemics%20using%20boosted%20regression%20trees&rft.jtitle=Infectious%20disease%20modelling&rft.au=Peng,%20Chun&rft.date=2024-12-01&rft.volume=9&rft.issue=4&rft.spage=1138&rft.epage=1146&rft.pages=1138-1146&rft.issn=2468-0427&rft.eissn=2468-0427&rft_id=info:doi/10.1016/j.idm.2024.06.006&rft_dat=%3Cproquest_doaj_%3E3082310251%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082310251&rft_id=info:pmid/39022297&rfr_iscdi=true |