Loading…

Predicting plant disease epidemics using boosted regression trees

Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar...

Full description

Saved in:
Bibliographic Details
Published in:Infectious disease modelling 2024-12, Vol.9 (4), p.1138-1146
Main Authors: Peng, Chun, Zhang, Xingyue, Wang, Weiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3
container_end_page 1146
container_issue 4
container_start_page 1138
container_title Infectious disease modelling
container_volume 9
creator Peng, Chun
Zhang, Xingyue
Wang, Weiming
description Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.
doi_str_mv 10.1016/j.idm.2024.06.006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468042724000885</els_id><doaj_id>oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d</doaj_id><sourcerecordid>3082310251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</originalsourceid><addsrcrecordid>eNp9kU1rVDEUhoMotoz9AW7kLt3M7cnHzSS4kFLUFgq60HXIx7ljhntvxiRT8N-bcWppNwZCDjnveRLel5C3FHoKVF7u-hjmngETPcgeQL4g50xItQbBNi-f1GfkopQdAFDFNsDFa3LGNTDG9OacXH3LGKKvcdl2-8kutQuxoC3Y4T4GnKMv3aEcuy6lUjF0GbcZS4lp6WpGLG_Iq9FOBS8ezhX58fnT9-ub9d3XL7fXV3drLwDqWgs7oAhAufJixAGE0xYGzUXAoJCCpkoHqa1vS0lOuQsOrHSCu43ljq_I7Ykbkt2ZfY6zzb9NstH8vUh5a2yu0U9oqOSWI4wDUyiABjW4caBaIbjRex0a6-OJtT-4GYPHpWY7PYM-7yzxp9mme0MpGzhre0XePxBy-nXAUs0ci8epWYjpUAwHxTgFNtAmpSepz6mUjOPjOxTMMUqzMy1Kc4zSgDQtyjbz7ukHHyf-BdcEH04CbJbfR8ym-IiLb2Fm9LV5Ev-D_wO8Ea-k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082310251</pqid></control><display><type>article</type><title>Predicting plant disease epidemics using boosted regression trees</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</creator><creatorcontrib>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</creatorcontrib><description>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</description><identifier>ISSN: 2468-0427</identifier><identifier>ISSN: 2468-2152</identifier><identifier>EISSN: 2468-0427</identifier><identifier>DOI: 10.1016/j.idm.2024.06.006</identifier><identifier>PMID: 39022297</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Boosted regression trees ; Plant disease epidemics ; Scalar-on-function model</subject><ispartof>Infectious disease modelling, 2024-12, Vol.9 (4), p.1138-1146</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</cites><orcidid>0000-0002-2144-890X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2468042724000885$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39022297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Chun</creatorcontrib><creatorcontrib>Zhang, Xingyue</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><title>Predicting plant disease epidemics using boosted regression trees</title><title>Infectious disease modelling</title><addtitle>Infect Dis Model</addtitle><description>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</description><subject>Boosted regression trees</subject><subject>Plant disease epidemics</subject><subject>Scalar-on-function model</subject><issn>2468-0427</issn><issn>2468-2152</issn><issn>2468-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1rVDEUhoMotoz9AW7kLt3M7cnHzSS4kFLUFgq60HXIx7ljhntvxiRT8N-bcWppNwZCDjnveRLel5C3FHoKVF7u-hjmngETPcgeQL4g50xItQbBNi-f1GfkopQdAFDFNsDFa3LGNTDG9OacXH3LGKKvcdl2-8kutQuxoC3Y4T4GnKMv3aEcuy6lUjF0GbcZS4lp6WpGLG_Iq9FOBS8ezhX58fnT9-ub9d3XL7fXV3drLwDqWgs7oAhAufJixAGE0xYGzUXAoJCCpkoHqa1vS0lOuQsOrHSCu43ljq_I7Ykbkt2ZfY6zzb9NstH8vUh5a2yu0U9oqOSWI4wDUyiABjW4caBaIbjRex0a6-OJtT-4GYPHpWY7PYM-7yzxp9mme0MpGzhre0XePxBy-nXAUs0ci8epWYjpUAwHxTgFNtAmpSepz6mUjOPjOxTMMUqzMy1Kc4zSgDQtyjbz7ukHHyf-BdcEH04CbJbfR8ym-IiLb2Fm9LV5Ev-D_wO8Ea-k</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Peng, Chun</creator><creator>Zhang, Xingyue</creator><creator>Wang, Weiming</creator><general>Elsevier B.V</general><general>KeAi Publishing</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2144-890X</orcidid></search><sort><creationdate>20241201</creationdate><title>Predicting plant disease epidemics using boosted regression trees</title><author>Peng, Chun ; Zhang, Xingyue ; Wang, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boosted regression trees</topic><topic>Plant disease epidemics</topic><topic>Scalar-on-function model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Chun</creatorcontrib><creatorcontrib>Zhang, Xingyue</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Infectious disease modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Chun</au><au>Zhang, Xingyue</au><au>Wang, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting plant disease epidemics using boosted regression trees</atitle><jtitle>Infectious disease modelling</jtitle><addtitle>Infect Dis Model</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>1138</spage><epage>1146</epage><pages>1138-1146</pages><issn>2468-0427</issn><issn>2468-2152</issn><eissn>2468-0427</eissn><abstract>Plant epidemics are often associated with weather-related variables. It is difficult to identify weather-related predictors for models predicting plant epidemics. In the article by Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a functional approach using scalar-on-function regression to model a binary outcome (FHB epidemic or non-epidemic) with respect to weather time series spanning 140 days relative to anthesis. The scalar-on-function models fit the data better than previously described logistic regression models. In this work, given the same dataset and models, we attempt to reproduce the article by Shah et al. using a different approach, boosted regression trees. After fitting, the classification accuracy and model statistics are surprisingly good.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>39022297</pmid><doi>10.1016/j.idm.2024.06.006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2144-890X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-0427
ispartof Infectious disease modelling, 2024-12, Vol.9 (4), p.1138-1146
issn 2468-0427
2468-2152
2468-0427
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_163a3e0f528e401d85bf5198e0bfcc9d
source ScienceDirect; PubMed Central
subjects Boosted regression trees
Plant disease epidemics
Scalar-on-function model
title Predicting plant disease epidemics using boosted regression trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20plant%20disease%20epidemics%20using%20boosted%20regression%20trees&rft.jtitle=Infectious%20disease%20modelling&rft.au=Peng,%20Chun&rft.date=2024-12-01&rft.volume=9&rft.issue=4&rft.spage=1138&rft.epage=1146&rft.pages=1138-1146&rft.issn=2468-0427&rft.eissn=2468-0427&rft_id=info:doi/10.1016/j.idm.2024.06.006&rft_dat=%3Cproquest_doaj_%3E3082310251%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-94a5e4d0138c4fe504b9a05934ded8e109189d69acccc86313bdb0a6b43b7a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082310251&rft_id=info:pmid/39022297&rfr_iscdi=true