Loading…
Justification of the bridge span vertical stiffness on high-speed railways
When designing bridges on high-speed railways, special attention should be paid to ensuring the safety of train traffic and the comfort of passengers. Excessive structure deformations (both elastic and non-elastic) result in unfavorable irregularities in the train movement pattern on the bridge and...
Saved in:
Published in: | E3S web of conferences 2019-01, Vol.135, p.3065 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When designing bridges on high-speed railways, special attention should be paid to ensuring the safety of train traffic and the comfort of passengers. Excessive structure deformations (both elastic and non-elastic) result in unfavorable irregularities in the train movement pattern on the bridge and so can lead to violation of the traffic safety requirements as well as to vibration and acceleration of the train body, which is inadmissible due to its effect on the human body or the transported goods. In this paper, based on numerical simulation, the results of the study of the motion of a high-speed train along bridge structures of the dynamic bridgetrain interaction was performed with respect to various models of high-speed trains running along the bridges. The obtained dependences help to provide a practical assessment of high-speed passenger car dynamics and passenger comfort under the most unfavorable conditions, when the train is running along a multi-span bridge. For these purposes, the dependences of the admissible value of the relative vertical deflection are presented, based on the envelope curves that show the typical dynamic passenger car parameters (natural frequency of car oscillations) and Corresponding with their oscillations on the multi-span girder bridges with various lengths |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/201913503065 |