Loading…

Comparative Cytotoxic Effects and Possible Mechanisms of Deoxynivalenol, Zearalenone and T-2 Toxin Exposure to Porcine Leydig Cells In Vitro

Mycotoxins such as zearalenone (ZEN), deoxynivalenol (DON) and T-2 toxin (T-2) are the most poisonous biological toxins in food pollution. Mycotoxin contaminations are a global health issue. The aim of the current study was to use porcine Leydig cells as a model to explore the toxic effects and unde...

Full description

Saved in:
Bibliographic Details
Published in:Toxins 2022-02, Vol.14 (2), p.113
Main Authors: Sun, Lingwei, Dai, Jianjun, Xu, Jiehuan, Yang, Junhua, Zhang, Defu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycotoxins such as zearalenone (ZEN), deoxynivalenol (DON) and T-2 toxin (T-2) are the most poisonous biological toxins in food pollution. Mycotoxin contaminations are a global health issue. The aim of the current study was to use porcine Leydig cells as a model to explore the toxic effects and underlying mechanisms of ZEN, DON and T-2. The 50% inhibitory concentration (IC ) of ZEN was 49.71 μM, and the IC values of DON and T-2 were 2.49 μM and 97.18 nM, respectively. Based on the values of IC , ZEN, DON and T-2 exposure resulted in increased cell apoptosis, as well as disrupted mitochondria membrane potential and cell cycle distribution. The results also showed that ZEN and DON significantly reduced testosterone and progesterone secretion in Leydig cells, but T-2 only reduced testosterone secretion. Furthermore, the expression of steroidogenic acute regulatory (StAR) protein and 3β-hydroxysteroid dehydrogenase (3β-HSD) were significantly decreased by ZEN, DON and T-2; whereas the protein expression of cholesterol side-chain cleavage enzyme (CYP11A1) was only significantly decreased by ZEN. Altogether, these data suggest that the ZEN, DON and T-2 toxins resulted in reproductive toxicity involving the inhibition of steroidogenesis and cell proliferation, which contributes to the cellular apoptosis induced by mitochondrial injury in porcine Leydig cells.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins14020113