Loading…

Genome sequencing and comparative genomics reveal insights into pathogenicity and evolution of Fusarium zanthoxyli, the causal agent of stem canker in prickly ash

Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem can...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2024-05, Vol.25 (1), p.502-502, Article 502
Main Authors: Ruan, Zhao, Jiao, Jiahui, Zhao, Junchi, Liu, Jiaxue, Liang, Chaoqiong, Yang, Xia, Sun, Yan, Tang, Guanghui, Li, Peiqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-024-10424-w