Loading…

Spatiotemporal Deformation of Existing Pipeline Due to New Shield Tunnelling Parallel Beneath Considering Construction Process

In this paper, we study the effects of the shield tunnel construction on the deformation of an existing pipeline parallel to and above the new shield tunnel. We propose an analytical solution to predict the spatiotemporal deformation of the existing pipeline and consider different force patterns of...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-01, Vol.12 (1), p.500
Main Authors: Liu, Xiang, Jiang, Annan, Fang, Qian, Wan, Yousheng, Li, Jianye, Guo, Xinping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the effects of the shield tunnel construction on the deformation of an existing pipeline parallel to and above the new shield tunnel. We propose an analytical solution to predict the spatiotemporal deformation of the existing pipeline and consider different force patterns of the shield tunnelling, i.e., ground volume loss, support pressure, frictional force, and torsional force. The proposed method is validated by the monitoring data of Subway Line 3 of Nanchang and provides a reasonable estimation of the pipeline’s deformation. The parametric analyses are performed to study the influences on the pipeline’s deformation. The main advantage of our paper is that the spatiotemporal characteristics of the existing pipeline’s deformation are analysed, providing longitudinal deformation curve (LDC), deformation development curve (DDC), and grouting reinforcement curve (GRC). Compared with the perpendicular undercrossing project, both LDC and DDC have the same profiles and maximum values and move forward as a whole with the shield tunnel advance. Thus, the spatiotemporal deformation of the overall pipeline can be extrapolated from the deformation of two known points on the pipeline. The spatiotemporal characteristic curves combined with LDC, DDC, and GRC can suggest feasible, effective, and economical construction and grouting schemes to control the pipeline’s deformation after the deformation control standards have been determined.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12010500