Loading…

Chromatin signature of widespread monoallelic expression

In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular fe...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2013-12, Vol.2, p.e01256-e01256
Main Authors: Nag, Anwesha, Savova, Virginia, Fung, Ho-Lim, Miron, Alexander, Yuan, Guo-Cheng, Zhang, Kun, Gimelbrant, Alexander A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. In this study, we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ∼20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.01256.001.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.01256