Loading…

Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale

Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor‐made process development. In this study, a double‐jacket feeding system was built to thermally liquef...

Full description

Saved in:
Bibliographic Details
Published in:Microbial biotechnology 2023-02, Vol.16 (2), p.295-306
Main Authors: Gutschmann, Björn, Maldonado Simões, Matilde, Schiewe, Thomas, Schröter, Edith S., Münzberg, Marvin, Neubauer, Peter, Bockisch, Anika, Riedel, Sebastian L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343
cites cdi_FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343
container_end_page 306
container_issue 2
container_start_page 295
container_title Microbial biotechnology
container_volume 16
creator Gutschmann, Björn
Maldonado Simões, Matilde
Schiewe, Thomas
Schröter, Edith S.
Münzberg, Marvin
Neubauer, Peter
Bockisch, Anika
Riedel, Sebastian L.
description Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor‐made process development. In this study, a double‐jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory‐scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real‐time by in‐line photon density wave spectroscopy. The process robustness was further evaluated during scale‐down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two‐thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale‐down cultivations. Application of this feeding system at 150‐L pilot‐scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale‐up to industrial scale.
doi_str_mv 10.1111/1751-7915.14104
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_16e9be28177947cab90c2cb22f70051d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_16e9be28177947cab90c2cb22f70051d</doaj_id><sourcerecordid>2697674380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343</originalsourceid><addsrcrecordid>eNqFkrtuFDEUhkcIREKgpkOWaGg28XU8bpDIikukIJpQW75uvHjHiz1DmCbKI_CMPAneTFglNFiWbJ_z-9Px8d80LxE8RnWcIM7QggvEjhFFkD5qDveRx_f2B82zUtYQthAy_LQ5IExgRER32FwvUz-EfkxjAd45G_oVKENWg1tNwKcMtilOl5PN6eek4jfVp5oC25zsaIaQeuBz2oCSYrDgSpWaU33YqAi8GkCdUelUaSlPv29-1ZwF2xDTUA_FqOieN0-8isW9uFuPmq8f3l8sPy3Ov3w8W747XxhGKF0wpXVnOuQ1pNo7I4QlGmliIWXUtxxpBTutueOudkUw3TnOMOkcwa0whJKj5mzm2qTWcptriXmSSQV5G0h5JVUegolOotYJ7XCHOBeUG6UFNNhojD2v3UO2st7OrO2oN84a19d-xQfQh5k-XMpV-iFFxxHDsALe3AFy-j66MshNKMbFqHpX_0HWmnnLKel20tf_SNdpzH1tlcS87VrEBSNVdTKrTE6lZOf3xSAodz6ROyfInRPkrU_qjVf337DX_zVGFbSz4CpEN_2PJz-fXuCZ_AcZ08yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2768617953</pqid></control><display><type>article</type><title>Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gutschmann, Björn ; Maldonado Simões, Matilde ; Schiewe, Thomas ; Schröter, Edith S. ; Münzberg, Marvin ; Neubauer, Peter ; Bockisch, Anika ; Riedel, Sebastian L.</creator><creatorcontrib>Gutschmann, Björn ; Maldonado Simões, Matilde ; Schiewe, Thomas ; Schröter, Edith S. ; Münzberg, Marvin ; Neubauer, Peter ; Bockisch, Anika ; Riedel, Sebastian L.</creatorcontrib><description>Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor‐made process development. In this study, a double‐jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory‐scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real‐time by in‐line photon density wave spectroscopy. The process robustness was further evaluated during scale‐down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two‐thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale‐down cultivations. Application of this feeding system at 150‐L pilot‐scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale‐up to industrial scale.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><identifier>DOI: 10.1111/1751-7915.14104</identifier><identifier>PMID: 35921398</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Aeration ; Animal fat ; Animals ; Batch processes ; Bioconversion ; Bioreactors ; Carbon ; Cultivation ; Feeding ; Fermentation ; Flow cytometry ; Iodides ; Laboratories ; Nitrogen ; Photon density ; Plastics ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - metabolism ; Polyhydroxyalkanoic acid ; Production costs ; Propidium iodide ; Soil bacteria ; Solid Waste ; Solid wastes ; Spectroscopy ; Spectrum analysis</subject><ispartof>Microbial biotechnology, 2023-02, Vol.16 (2), p.295-306</ispartof><rights>2022 The Authors. published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343</citedby><cites>FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343</cites><orcidid>0000-0003-0166-8734 ; 0000-0002-3908-7591 ; 0000-0002-1214-9713 ; 0000-0002-7568-0632 ; 0000-0003-1373-417X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2768617953/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2768617953?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35921398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutschmann, Björn</creatorcontrib><creatorcontrib>Maldonado Simões, Matilde</creatorcontrib><creatorcontrib>Schiewe, Thomas</creatorcontrib><creatorcontrib>Schröter, Edith S.</creatorcontrib><creatorcontrib>Münzberg, Marvin</creatorcontrib><creatorcontrib>Neubauer, Peter</creatorcontrib><creatorcontrib>Bockisch, Anika</creatorcontrib><creatorcontrib>Riedel, Sebastian L.</creatorcontrib><title>Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale</title><title>Microbial biotechnology</title><addtitle>Microb Biotechnol</addtitle><description>Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor‐made process development. In this study, a double‐jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory‐scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real‐time by in‐line photon density wave spectroscopy. The process robustness was further evaluated during scale‐down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two‐thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale‐down cultivations. Application of this feeding system at 150‐L pilot‐scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale‐up to industrial scale.</description><subject>Aeration</subject><subject>Animal fat</subject><subject>Animals</subject><subject>Batch processes</subject><subject>Bioconversion</subject><subject>Bioreactors</subject><subject>Carbon</subject><subject>Cultivation</subject><subject>Feeding</subject><subject>Fermentation</subject><subject>Flow cytometry</subject><subject>Iodides</subject><subject>Laboratories</subject><subject>Nitrogen</subject><subject>Photon density</subject><subject>Plastics</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - metabolism</subject><subject>Polyhydroxyalkanoic acid</subject><subject>Production costs</subject><subject>Propidium iodide</subject><subject>Soil bacteria</subject><subject>Solid Waste</subject><subject>Solid wastes</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkrtuFDEUhkcIREKgpkOWaGg28XU8bpDIikukIJpQW75uvHjHiz1DmCbKI_CMPAneTFglNFiWbJ_z-9Px8d80LxE8RnWcIM7QggvEjhFFkD5qDveRx_f2B82zUtYQthAy_LQ5IExgRER32FwvUz-EfkxjAd45G_oVKENWg1tNwKcMtilOl5PN6eek4jfVp5oC25zsaIaQeuBz2oCSYrDgSpWaU33YqAi8GkCdUelUaSlPv29-1ZwF2xDTUA_FqOieN0-8isW9uFuPmq8f3l8sPy3Ov3w8W747XxhGKF0wpXVnOuQ1pNo7I4QlGmliIWXUtxxpBTutueOudkUw3TnOMOkcwa0whJKj5mzm2qTWcptriXmSSQV5G0h5JVUegolOotYJ7XCHOBeUG6UFNNhojD2v3UO2st7OrO2oN84a19d-xQfQh5k-XMpV-iFFxxHDsALe3AFy-j66MshNKMbFqHpX_0HWmnnLKel20tf_SNdpzH1tlcS87VrEBSNVdTKrTE6lZOf3xSAodz6ROyfInRPkrU_qjVf337DX_zVGFbSz4CpEN_2PJz-fXuCZ_AcZ08yA</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Gutschmann, Björn</creator><creator>Maldonado Simões, Matilde</creator><creator>Schiewe, Thomas</creator><creator>Schröter, Edith S.</creator><creator>Münzberg, Marvin</creator><creator>Neubauer, Peter</creator><creator>Bockisch, Anika</creator><creator>Riedel, Sebastian L.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0166-8734</orcidid><orcidid>https://orcid.org/0000-0002-3908-7591</orcidid><orcidid>https://orcid.org/0000-0002-1214-9713</orcidid><orcidid>https://orcid.org/0000-0002-7568-0632</orcidid><orcidid>https://orcid.org/0000-0003-1373-417X</orcidid></search><sort><creationdate>202302</creationdate><title>Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale</title><author>Gutschmann, Björn ; Maldonado Simões, Matilde ; Schiewe, Thomas ; Schröter, Edith S. ; Münzberg, Marvin ; Neubauer, Peter ; Bockisch, Anika ; Riedel, Sebastian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeration</topic><topic>Animal fat</topic><topic>Animals</topic><topic>Batch processes</topic><topic>Bioconversion</topic><topic>Bioreactors</topic><topic>Carbon</topic><topic>Cultivation</topic><topic>Feeding</topic><topic>Fermentation</topic><topic>Flow cytometry</topic><topic>Iodides</topic><topic>Laboratories</topic><topic>Nitrogen</topic><topic>Photon density</topic><topic>Plastics</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - metabolism</topic><topic>Polyhydroxyalkanoic acid</topic><topic>Production costs</topic><topic>Propidium iodide</topic><topic>Soil bacteria</topic><topic>Solid Waste</topic><topic>Solid wastes</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutschmann, Björn</creatorcontrib><creatorcontrib>Maldonado Simões, Matilde</creatorcontrib><creatorcontrib>Schiewe, Thomas</creatorcontrib><creatorcontrib>Schröter, Edith S.</creatorcontrib><creatorcontrib>Münzberg, Marvin</creatorcontrib><creatorcontrib>Neubauer, Peter</creatorcontrib><creatorcontrib>Bockisch, Anika</creatorcontrib><creatorcontrib>Riedel, Sebastian L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbial biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutschmann, Björn</au><au>Maldonado Simões, Matilde</au><au>Schiewe, Thomas</au><au>Schröter, Edith S.</au><au>Münzberg, Marvin</au><au>Neubauer, Peter</au><au>Bockisch, Anika</au><au>Riedel, Sebastian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale</atitle><jtitle>Microbial biotechnology</jtitle><addtitle>Microb Biotechnol</addtitle><date>2023-02</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>295</spage><epage>306</epage><pages>295-306</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor‐made process development. In this study, a double‐jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory‐scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real‐time by in‐line photon density wave spectroscopy. The process robustness was further evaluated during scale‐down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two‐thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale‐down cultivations. Application of this feeding system at 150‐L pilot‐scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale‐up to industrial scale.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35921398</pmid><doi>10.1111/1751-7915.14104</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0166-8734</orcidid><orcidid>https://orcid.org/0000-0002-3908-7591</orcidid><orcidid>https://orcid.org/0000-0002-1214-9713</orcidid><orcidid>https://orcid.org/0000-0002-7568-0632</orcidid><orcidid>https://orcid.org/0000-0003-1373-417X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7915
ispartof Microbial biotechnology, 2023-02, Vol.16 (2), p.295-306
issn 1751-7915
1751-7915
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_16e9be28177947cab90c2cb22f70051d
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Aeration
Animal fat
Animals
Batch processes
Bioconversion
Bioreactors
Carbon
Cultivation
Feeding
Fermentation
Flow cytometry
Iodides
Laboratories
Nitrogen
Photon density
Plastics
Polyhydroxyalkanoates
Polyhydroxyalkanoates - metabolism
Polyhydroxyalkanoic acid
Production costs
Propidium iodide
Soil bacteria
Solid Waste
Solid wastes
Spectroscopy
Spectrum analysis
title Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory‐ and pilot‐scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20feeding%20strategy%20for%20polyhydroxyalkanoate%20production%20from%20solid%20waste%20animal%20fat%20at%20laboratory%E2%80%90%20and%20pilot%E2%80%90scale&rft.jtitle=Microbial%20biotechnology&rft.au=Gutschmann,%20Bj%C3%B6rn&rft.date=2023-02&rft.volume=16&rft.issue=2&rft.spage=295&rft.epage=306&rft.pages=295-306&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/10.1111/1751-7915.14104&rft_dat=%3Cproquest_doaj_%3E2697674380%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5344-5abb8c81fb04bfec99d3b1b3d0454f671ba08bb7e7e11195b8e75238e3269c343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2768617953&rft_id=info:pmid/35921398&rfr_iscdi=true