Loading…

Clean Utilization of Limonite Ore by Suspension Magnetization Roasting Technology

As a typical refractory iron ore, the utilization of limonite ore with conventional mineral processing methods has great limitations. In this study, suspension magnetization roasting technology was developed and utilized to recover limonite ore. The influences of roasting temperature, roasting time,...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2022-02, Vol.12 (2), p.260
Main Authors: Jin, Jianping, Zhu, Xinran, Li, Pengchao, Li, Yanjun, Han, Yuexin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a typical refractory iron ore, the utilization of limonite ore with conventional mineral processing methods has great limitations. In this study, suspension magnetization roasting technology was developed and utilized to recover limonite ore. The influences of roasting temperature, roasting time, and reducing gas concentration on the magnetization roasting process were investigated. The optimal roasting conditions were determined to be a roasting temperature of 480 °C, a roasting time of 12.5 min, and a reducing gas concentration of 20%. Under optimal conditions, an iron concentrate grade of 60.12% and iron recovery of 91.96% was obtained. The phase transformation, magnetism variation, and microstructure evolution behavior were systematically analyzed by X-ray diffraction, vibrating sample magnetometer, and scanning electron microscope. The results indicated that hematite and goethite were eventually transformed into magnetite during the magnetization roasting process. Moreover, the magnetism of roasted products significantly improved due to the formation of ferrimagnetic magnetite in magnetization roasting. This study has implications for the utilization of limonite ore using suspension magnetization roasting technology.
ISSN:2075-163X
2075-163X
DOI:10.3390/min12020260