Loading…
Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride
In this work, a chemical modification method was used to prepare silicone grease with high thermal conductivity. We report two preparation methods for thermal conductive fillers, which are hydroxylated boron nitride-grafted carboxylic silicone oil (h-BN-OH@CS) and amino boron nitride-grafted carboxy...
Saved in:
Published in: | Lubricants 2023-04, Vol.11 (5), p.198 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a chemical modification method was used to prepare silicone grease with high thermal conductivity. We report two preparation methods for thermal conductive fillers, which are hydroxylated boron nitride-grafted carboxylic silicone oil (h-BN-OH@CS) and amino boron nitride-grafted carboxylic silicone oil (h-BN-NH2@CS). When h-BN-OH@CS and h-BN-NH2@CS were filled with 30 wt% in the base grease, the thermal conductivity was 1.324 W m−1 K−1 and 0.982 W m−1 K−1, which is 6.04 and 4.48 times that of the base grease (0.219 W m−1 K−1), respectively. The interfacial thermal resistance is reduced from 11.699 °C W−1 to 1.889 °C W−1 and 2.514 °C W−1, respectively. Inorganic filler h-BN and organic filler carboxylic silicone oil were chemically grafted to improve the compatibility between h-BN and the base grease. The covalent bond between functionalized h-BN and carboxylic silicone oil is stronger than the van der Waals force, which can reduce the viscosity of the silicone grease. |
---|---|
ISSN: | 2075-4442 2075-4442 |
DOI: | 10.3390/lubricants11050198 |