Loading…
Combining Hydrological Models and Remote Sensing to Characterize Snowpack Dynamics in High Mountains
Seasonal snowpacks, characterized by their snow water equivalent (SWE), can play a major role in the hydrological cycle of montane environments with months of snow accretion followed by episodes of melt controlling flood risk and water resource availability downstream. Quantifying the temporal and s...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-01, Vol.16 (2), p.264 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seasonal snowpacks, characterized by their snow water equivalent (SWE), can play a major role in the hydrological cycle of montane environments with months of snow accretion followed by episodes of melt controlling flood risk and water resource availability downstream. Quantifying the temporal and spatial patterns of snowpack accumulation and its subsequent melt and runoff is an internationally significant challenge, particularly within mountainous regions featuring complex terrain with limited or absent observational data. Here we report a new approach to snowpack characterization using open-source global satellite and modelled data products (precipitation and SWE) greatly enhancing the utility of the widely used Soil and Water Assessment Tool (SWAT). The paper focusses on the c. 23,000 km2 Chenab river basin (CRB) in the headwaters of the Indus Basin, globally important because of its large and growing population and increasing water insecurity due to climate change. We used five area-weighted averaged satellite, gridded and reanalysis precipitation datasets: ERA5-Land, CMORPH, TRMM, APHRODITE and CPC UPP. As well as comparison to local weather station data, these were used in SWAT to model streamflow for evaluation against observed streamflow at the basin outlet. ERA5-Land data provided the best streamflow match-ups and was used to infer snowpack (SWE) dynamics at basin and sub-basin scales. Snow reference data were derived from remote sensing and modelled SWE re-analysis products: ULCA-SWE and KRA-SWE, respectively. Beyond conventional auto-calibration and single-variable approaches we undertook multi-variable calibration using R-SWAT to manually adjust snow parameters alongside observed streamflow data. Characterization of basin-wide patterns of snowpack build-up and melt (SWE dynamics) were greatly strengthened using KRA-SWE data accompanied by improved streamflow simulation in sub-basins dominated by seasonal snow cover. UCLA-SWE data also improved SWE estimations using R-SWAT but weakened the performance of simulated streamflow due to under capture of seasonal runoff from permanent snow/ice fields in the CRB. This research highlights the utility and value of remote sensing and modelling data to drive better understanding of snowpack dynamics and their contribution to runoff in the absence of in situ snowpack data in high-altitude environments. An improved understanding of snow-bound water is vital in natural hazard risk assessment and in better man |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16020264 |