Loading…
Quantum computational speed of a nanowires system with Rashba interaction in the presence of a magnetic field
The present research is designed to examine the dynamic of the quantum computational speed in a nanowire system through the orthogonality speed when three distinct types of magnetic fields are applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we investigat...
Saved in:
Published in: | Scientific reports 2021-11, Vol.11 (1), p.22726-22726, Article 22726 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present research is designed to examine the dynamic of the quantum computational speed in a nanowire system through the orthogonality speed when three distinct types of magnetic fields are applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we investigate the action of the magnetic fields, the spin-orbit coupling, and the system’s initial states on the orthogonality speed. The observed results reveal that a substantial correlation between the intensity of the spin-orbit coupling and the dynamics of the orthogonality speed, where the orthogonality speed decreasing as the spin-orbit coupling increases. Furthermore, the initial states of the nanowire system are critical for regulating the speed of transmuting the information and computations. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-02051-2 |