Loading…

Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme

In order to determine the installation position of the front fin on the example rocket forebody, an optimized method based on a comprehensive evaluation indicator and variable step search is presented. The comprehensive indicator consists of four weight coefficients, two lateral aerodynamic forces a...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace 2024-08, Vol.11 (8), p.617
Main Authors: Zhou, Zeyang, Huang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c260t-9a4161599883e1d98c2bca96e1f4d28b60bd099e6f5e47d38cfda79667f021663
container_end_page
container_issue 8
container_start_page 617
container_title Aerospace
container_volume 11
creator Zhou, Zeyang
Huang, Jun
description In order to determine the installation position of the front fin on the example rocket forebody, an optimized method based on a comprehensive evaluation indicator and variable step search is presented. The comprehensive indicator consists of four weight coefficients, two lateral aerodynamic forces and two aerodynamic moments. The computational fluid dynamics method based on a shear stress transport turbulence model is established to analyze the flow field characteristics of the forebody. The results indicate that under equal weight coefficients, the presented search algorithm can provide an optimized solution for the front fin to achieve the minimum value of the comprehensive evaluation indicator. When the range of the current wing movement changes or the weight coefficient distribution changes, this search algorithm can still provide the optimal solution and some feasible solutions. Under the given conditions, there is a difference between the optimal solution of the aerodynamic force priority and that of the aerodynamic moment priority. For the case of the aerodynamic moment priority, the mean level of the pressure coefficient corresponding to the optimal solution on the given observation plane is low. The presented method is effective in learning the appropriate installation position of the rocket’s front fins.
doi_str_mv 10.3390/aerospace11080617
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_17391c4d1d96429eb40ec854e3327935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807404264</galeid><doaj_id>oai_doaj_org_article_17391c4d1d96429eb40ec854e3327935</doaj_id><sourcerecordid>A807404264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-9a4161599883e1d98c2bca96e1f4d28b60bd099e6f5e47d38cfda79667f021663</originalsourceid><addsrcrecordid>eNplUU1rGzEQXUoLDY5_QG-CnJ2OPlYfx2Dq1hBISOpehVYaOXLXK1e7PvjfV7VLCGTmMG-GeW8GXtN8oXDLuYGvDkseD84jpaBBUvWhuWKMyYXgFD6-wZ-b-TjuoIahXEN71Tw-5jFNKQ9k6Xp_7N0Zx1zIquRhIqs0kBzJU_a_sXa5YJfDiWzGNGzJL1eS63okzxMeyLN_wT1eN5-i60ec_6-zZrP69nP5Y3H_8H29vLtfeCZhWhgnqKStMVpzpMFozzrvjEQaRWC6k9AFMAZlbFGowLWPwSkjpYrAqJR81qwvuiG7nT2UtHflZLNL9jzIZWtdmZLv0VLFDfUi1DNSMIOdAPS6Fcg5U4a3VevmonUo-c8Rx8nu8rEM9X3LwShlGBhdt24vW1tXRdMQ81Scrxlwn3weMKY6v9OgBAgmRSXQC8FXe8aC8fVNCvafcfadcfwv0QWK2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097792098</pqid></control><display><type>article</type><title>Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Zhou, Zeyang ; Huang, Jun</creator><creatorcontrib>Zhou, Zeyang ; Huang, Jun</creatorcontrib><description>In order to determine the installation position of the front fin on the example rocket forebody, an optimized method based on a comprehensive evaluation indicator and variable step search is presented. The comprehensive indicator consists of four weight coefficients, two lateral aerodynamic forces and two aerodynamic moments. The computational fluid dynamics method based on a shear stress transport turbulence model is established to analyze the flow field characteristics of the forebody. The results indicate that under equal weight coefficients, the presented search algorithm can provide an optimized solution for the front fin to achieve the minimum value of the comprehensive evaluation indicator. When the range of the current wing movement changes or the weight coefficient distribution changes, this search algorithm can still provide the optimal solution and some feasible solutions. Under the given conditions, there is a difference between the optimal solution of the aerodynamic force priority and that of the aerodynamic moment priority. For the case of the aerodynamic moment priority, the mean level of the pressure coefficient corresponding to the optimal solution on the given observation plane is low. The presented method is effective in learning the appropriate installation position of the rocket’s front fins.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace11080617</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerodynamic analysis ; Aerodynamic forces ; Aerodynamics ; Algorithms ; Artificial satellites ; computational fluid ; Computational fluid dynamics ; Design ; Design and construction ; Fins ; Flow characteristics ; Fluid dynamics ; Fluid flow ; Forebodies ; Genetic algorithms ; Hydrodynamics ; hypersonic ; Mach number ; Mathematical optimization ; Meteorological satellites ; Optimization ; Position indicators ; rocket forebody fin ; Rockets ; Rockets (Aeronautics) ; Search algorithms ; Shear stress ; Simulation ; Turbulence models ; Vehicles ; Weight</subject><ispartof>Aerospace, 2024-08, Vol.11 (8), p.617</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-9a4161599883e1d98c2bca96e1f4d28b60bd099e6f5e47d38cfda79667f021663</cites><orcidid>0000-0002-8469-5879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3097792098/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3097792098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhou, Zeyang</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><title>Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme</title><title>Aerospace</title><description>In order to determine the installation position of the front fin on the example rocket forebody, an optimized method based on a comprehensive evaluation indicator and variable step search is presented. The comprehensive indicator consists of four weight coefficients, two lateral aerodynamic forces and two aerodynamic moments. The computational fluid dynamics method based on a shear stress transport turbulence model is established to analyze the flow field characteristics of the forebody. The results indicate that under equal weight coefficients, the presented search algorithm can provide an optimized solution for the front fin to achieve the minimum value of the comprehensive evaluation indicator. When the range of the current wing movement changes or the weight coefficient distribution changes, this search algorithm can still provide the optimal solution and some feasible solutions. Under the given conditions, there is a difference between the optimal solution of the aerodynamic force priority and that of the aerodynamic moment priority. For the case of the aerodynamic moment priority, the mean level of the pressure coefficient corresponding to the optimal solution on the given observation plane is low. The presented method is effective in learning the appropriate installation position of the rocket’s front fins.</description><subject>aerodynamic analysis</subject><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Algorithms</subject><subject>Artificial satellites</subject><subject>computational fluid</subject><subject>Computational fluid dynamics</subject><subject>Design</subject><subject>Design and construction</subject><subject>Fins</subject><subject>Flow characteristics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Forebodies</subject><subject>Genetic algorithms</subject><subject>Hydrodynamics</subject><subject>hypersonic</subject><subject>Mach number</subject><subject>Mathematical optimization</subject><subject>Meteorological satellites</subject><subject>Optimization</subject><subject>Position indicators</subject><subject>rocket forebody fin</subject><subject>Rockets</subject><subject>Rockets (Aeronautics)</subject><subject>Search algorithms</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Turbulence models</subject><subject>Vehicles</subject><subject>Weight</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUU1rGzEQXUoLDY5_QG-CnJ2OPlYfx2Dq1hBISOpehVYaOXLXK1e7PvjfV7VLCGTmMG-GeW8GXtN8oXDLuYGvDkseD84jpaBBUvWhuWKMyYXgFD6-wZ-b-TjuoIahXEN71Tw-5jFNKQ9k6Xp_7N0Zx1zIquRhIqs0kBzJU_a_sXa5YJfDiWzGNGzJL1eS63okzxMeyLN_wT1eN5-i60ec_6-zZrP69nP5Y3H_8H29vLtfeCZhWhgnqKStMVpzpMFozzrvjEQaRWC6k9AFMAZlbFGowLWPwSkjpYrAqJR81qwvuiG7nT2UtHflZLNL9jzIZWtdmZLv0VLFDfUi1DNSMIOdAPS6Fcg5U4a3VevmonUo-c8Rx8nu8rEM9X3LwShlGBhdt24vW1tXRdMQ81Scrxlwn3weMKY6v9OgBAgmRSXQC8FXe8aC8fVNCvafcfadcfwv0QWK2Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhou, Zeyang</creator><creator>Huang, Jun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8469-5879</orcidid></search><sort><creationdate>20240801</creationdate><title>Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme</title><author>Zhou, Zeyang ; Huang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-9a4161599883e1d98c2bca96e1f4d28b60bd099e6f5e47d38cfda79667f021663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerodynamic analysis</topic><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Algorithms</topic><topic>Artificial satellites</topic><topic>computational fluid</topic><topic>Computational fluid dynamics</topic><topic>Design</topic><topic>Design and construction</topic><topic>Fins</topic><topic>Flow characteristics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Forebodies</topic><topic>Genetic algorithms</topic><topic>Hydrodynamics</topic><topic>hypersonic</topic><topic>Mach number</topic><topic>Mathematical optimization</topic><topic>Meteorological satellites</topic><topic>Optimization</topic><topic>Position indicators</topic><topic>rocket forebody fin</topic><topic>Rockets</topic><topic>Rockets (Aeronautics)</topic><topic>Search algorithms</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Turbulence models</topic><topic>Vehicles</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zeyang</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zeyang</au><au>Huang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme</atitle><jtitle>Aerospace</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>617</spage><pages>617-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>In order to determine the installation position of the front fin on the example rocket forebody, an optimized method based on a comprehensive evaluation indicator and variable step search is presented. The comprehensive indicator consists of four weight coefficients, two lateral aerodynamic forces and two aerodynamic moments. The computational fluid dynamics method based on a shear stress transport turbulence model is established to analyze the flow field characteristics of the forebody. The results indicate that under equal weight coefficients, the presented search algorithm can provide an optimized solution for the front fin to achieve the minimum value of the comprehensive evaluation indicator. When the range of the current wing movement changes or the weight coefficient distribution changes, this search algorithm can still provide the optimal solution and some feasible solutions. Under the given conditions, there is a difference between the optimal solution of the aerodynamic force priority and that of the aerodynamic moment priority. For the case of the aerodynamic moment priority, the mean level of the pressure coefficient corresponding to the optimal solution on the given observation plane is low. The presented method is effective in learning the appropriate installation position of the rocket’s front fins.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace11080617</doi><orcidid>https://orcid.org/0000-0002-8469-5879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4310
ispartof Aerospace, 2024-08, Vol.11 (8), p.617
issn 2226-4310
2226-4310
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_17391c4d1d96429eb40ec854e3327935
source Publicly Available Content Database; EZB Electronic Journals Library
subjects aerodynamic analysis
Aerodynamic forces
Aerodynamics
Algorithms
Artificial satellites
computational fluid
Computational fluid dynamics
Design
Design and construction
Fins
Flow characteristics
Fluid dynamics
Fluid flow
Forebodies
Genetic algorithms
Hydrodynamics
hypersonic
Mach number
Mathematical optimization
Meteorological satellites
Optimization
Position indicators
rocket forebody fin
Rockets
Rockets (Aeronautics)
Search algorithms
Shear stress
Simulation
Turbulence models
Vehicles
Weight
title Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Position%20Calculation%20for%20Front%20Fin%20of%20Rocket%20Forebody%20Using%20Variable%20Step%20Scheme&rft.jtitle=Aerospace&rft.au=Zhou,%20Zeyang&rft.date=2024-08-01&rft.volume=11&rft.issue=8&rft.spage=617&rft.pages=617-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace11080617&rft_dat=%3Cgale_doaj_%3EA807404264%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-9a4161599883e1d98c2bca96e1f4d28b60bd099e6f5e47d38cfda79667f021663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097792098&rft_id=info:pmid/&rft_galeid=A807404264&rfr_iscdi=true