Loading…

Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency

Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-09, Vol.17 (18), p.4677
Main Authors: Dou, Xiangji, Qian, Menxing, Zhao, Xinli, Wang, An, Lei, Zhengdong, Guo, Erpeng, Chen, Yufei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-84570eff6029e926afded6ee25af3a985b5e9c45522c2410f437551719a3469f3
container_end_page
container_issue 18
container_start_page 4677
container_title Energies (Basel)
container_volume 17
creator Dou, Xiangji
Qian, Menxing
Zhao, Xinli
Wang, An
Lei, Zhengdong
Guo, Erpeng
Chen, Yufei
description Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development.
doi_str_mv 10.3390/en17184677
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_175e717fa93e4f7dbdd2c181ee08f7f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810659834</galeid><doaj_id>oai_doaj_org_article_175e717fa93e4f7dbdd2c181ee08f7f3</doaj_id><sourcerecordid>A810659834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-84570eff6029e926afded6ee25af3a985b5e9c45522c2410f437551719a3469f3</originalsourceid><addsrcrecordid>eNpNUcFKAzEQXURBUS9-QcCbsJrsJJvNUcVqQVSs3oSQJhNN2SY1u1X6926tqDOHGd7Me8zwiuKI0VMARc8wMskaXku5VewxpeqSUQnb__rd4rDrZnQIAAYAe8XLqF0GR0Zt-iQX-GY-QsokRHJnYppjj7mcWNMieUgZO2KiI-O-I-P5wtiepEgmb-vpfWjJI9r0gXlFrrwPNmC0q4Nix5u2w8Oful88j66eLm_K2_vr8eX5bWmrRvVlw4Wk6H1NK4Wqqo136GrEShgPRjViKlBZLkRV2Yoz6jlIIYZflQFeKw_7xXij65KZ6UUOc5NXOpmgv4GUX7XJfbAtaiYFSia9UYDcSzd1rrKsYYi08dLDoHW80Vrk9L7ErteztMxxOF8DY5TXVDE-bJ1utl6H93WIPvXZ2CEdzoNNEX0Y8POG0VqoBtaEkw3B5tR1Gf3vmYzqtXv6zz34AiJ6ifQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110460914</pqid></control><display><type>article</type><title>Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency</title><source>Publicly Available Content Database</source><creator>Dou, Xiangji ; Qian, Menxing ; Zhao, Xinli ; Wang, An ; Lei, Zhengdong ; Guo, Erpeng ; Chen, Yufei</creator><creatorcontrib>Dou, Xiangji ; Qian, Menxing ; Zhao, Xinli ; Wang, An ; Lei, Zhengdong ; Guo, Erpeng ; Chen, Yufei</creatorcontrib><description>Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en17184677</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Analysis ; capillary force ; Contact angle ; Flow velocity ; Fluids ; Friction ; Gases ; Hydrocarbons ; imbibition displacement ; Methods ; multifactor analysis ; Oil recovery ; Oil shale ; Permeability ; Petroleum mining ; Pore size ; Shale oil ; Shale oils ; Simulation ; single nanopore ; Viscosity ; Water</subject><ispartof>Energies (Basel), 2024-09, Vol.17 (18), p.4677</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-84570eff6029e926afded6ee25af3a985b5e9c45522c2410f437551719a3469f3</cites><orcidid>0000-0002-0367-5092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110460914/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110460914?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Dou, Xiangji</creatorcontrib><creatorcontrib>Qian, Menxing</creatorcontrib><creatorcontrib>Zhao, Xinli</creatorcontrib><creatorcontrib>Wang, An</creatorcontrib><creatorcontrib>Lei, Zhengdong</creatorcontrib><creatorcontrib>Guo, Erpeng</creatorcontrib><creatorcontrib>Chen, Yufei</creatorcontrib><title>Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency</title><title>Energies (Basel)</title><description>Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development.</description><subject>Adsorption</subject><subject>Analysis</subject><subject>capillary force</subject><subject>Contact angle</subject><subject>Flow velocity</subject><subject>Fluids</subject><subject>Friction</subject><subject>Gases</subject><subject>Hydrocarbons</subject><subject>imbibition displacement</subject><subject>Methods</subject><subject>multifactor analysis</subject><subject>Oil recovery</subject><subject>Oil shale</subject><subject>Permeability</subject><subject>Petroleum mining</subject><subject>Pore size</subject><subject>Shale oil</subject><subject>Shale oils</subject><subject>Simulation</subject><subject>single nanopore</subject><subject>Viscosity</subject><subject>Water</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEQXURBUS9-QcCbsJrsJJvNUcVqQVSs3oSQJhNN2SY1u1X6926tqDOHGd7Me8zwiuKI0VMARc8wMskaXku5VewxpeqSUQnb__rd4rDrZnQIAAYAe8XLqF0GR0Zt-iQX-GY-QsokRHJnYppjj7mcWNMieUgZO2KiI-O-I-P5wtiepEgmb-vpfWjJI9r0gXlFrrwPNmC0q4Nix5u2w8Oful88j66eLm_K2_vr8eX5bWmrRvVlw4Wk6H1NK4Wqqo136GrEShgPRjViKlBZLkRV2Yoz6jlIIYZflQFeKw_7xXij65KZ6UUOc5NXOpmgv4GUX7XJfbAtaiYFSia9UYDcSzd1rrKsYYi08dLDoHW80Vrk9L7ErteztMxxOF8DY5TXVDE-bJ1utl6H93WIPvXZ2CEdzoNNEX0Y8POG0VqoBtaEkw3B5tR1Gf3vmYzqtXv6zz34AiJ6ifQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Dou, Xiangji</creator><creator>Qian, Menxing</creator><creator>Zhao, Xinli</creator><creator>Wang, An</creator><creator>Lei, Zhengdong</creator><creator>Guo, Erpeng</creator><creator>Chen, Yufei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0367-5092</orcidid></search><sort><creationdate>20240901</creationdate><title>Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency</title><author>Dou, Xiangji ; Qian, Menxing ; Zhao, Xinli ; Wang, An ; Lei, Zhengdong ; Guo, Erpeng ; Chen, Yufei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-84570eff6029e926afded6ee25af3a985b5e9c45522c2410f437551719a3469f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Analysis</topic><topic>capillary force</topic><topic>Contact angle</topic><topic>Flow velocity</topic><topic>Fluids</topic><topic>Friction</topic><topic>Gases</topic><topic>Hydrocarbons</topic><topic>imbibition displacement</topic><topic>Methods</topic><topic>multifactor analysis</topic><topic>Oil recovery</topic><topic>Oil shale</topic><topic>Permeability</topic><topic>Petroleum mining</topic><topic>Pore size</topic><topic>Shale oil</topic><topic>Shale oils</topic><topic>Simulation</topic><topic>single nanopore</topic><topic>Viscosity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Xiangji</creatorcontrib><creatorcontrib>Qian, Menxing</creatorcontrib><creatorcontrib>Zhao, Xinli</creatorcontrib><creatorcontrib>Wang, An</creatorcontrib><creatorcontrib>Lei, Zhengdong</creatorcontrib><creatorcontrib>Guo, Erpeng</creatorcontrib><creatorcontrib>Chen, Yufei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Xiangji</au><au>Qian, Menxing</au><au>Zhao, Xinli</au><au>Wang, An</au><au>Lei, Zhengdong</au><au>Guo, Erpeng</au><au>Chen, Yufei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency</atitle><jtitle>Energies (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>17</volume><issue>18</issue><spage>4677</spage><pages>4677-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en17184677</doi><orcidid>https://orcid.org/0000-0002-0367-5092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2024-09, Vol.17 (18), p.4677
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_175e717fa93e4f7dbdd2c181ee08f7f3
source Publicly Available Content Database
subjects Adsorption
Analysis
capillary force
Contact angle
Flow velocity
Fluids
Friction
Gases
Hydrocarbons
imbibition displacement
Methods
multifactor analysis
Oil recovery
Oil shale
Permeability
Petroleum mining
Pore size
Shale oil
Shale oils
Simulation
single nanopore
Viscosity
Water
title Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20Flow%20Behavior%20in%20Nanometer-Scale%20Pores%20and%20Its%20Impact%20on%20Shale%20Oil%20Recovery%20Efficiency&rft.jtitle=Energies%20(Basel)&rft.au=Dou,%20Xiangji&rft.date=2024-09-01&rft.volume=17&rft.issue=18&rft.spage=4677&rft.pages=4677-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en17184677&rft_dat=%3Cgale_doaj_%3EA810659834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-84570eff6029e926afded6ee25af3a985b5e9c45522c2410f437551719a3469f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110460914&rft_id=info:pmid/&rft_galeid=A810659834&rfr_iscdi=true