Loading…

Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population

Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were ret...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.24259-11, Article 24259
Main Authors: Li, Wenbo, Liu, Xiaonan, Liu, Yang, Liu, Jie, Guo, Qirui, Li, Jing, Zheng, Wei, Zhang, Longyou, Zhang, Ying, Hong, Yin, Wang, Anxin, Zheng, Huaguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13
container_end_page 11
container_issue 1
container_start_page 24259
container_title Scientific reports
container_volume 14
creator Li, Wenbo
Liu, Xiaonan
Liu, Yang
Liu, Jie
Guo, Qirui
Li, Jing
Zheng, Wei
Zhang, Longyou
Zhang, Ying
Hong, Yin
Wang, Anxin
Zheng, Huaguang
description Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted P  
doi_str_mv 10.1038/s41598-024-74393-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90</doaj_id><sourcerecordid>3117209716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvB37BNCFR-VKrjA2Zq1naxXjp3aCdL--3p3S2k54INted55PB6_TfMao_cYUfmhMMyV7BBhXc-oop141pwTxHhHKCHPH-3PmstSdqgOThTD6mVzRuvKJOXnze33NKUxw9QOKbdzdtabxcexhbKf5iVNsHjT-rhkMBmih9DCsnU5FRPqfAiWxcVUfKmqFtro1pxCGr2BEPbt1kFYtvt2TvMaKivFV82LAUJxl_frRfPry-efV9-6mx9fr68-3XSGEbJ0gxwsoorIfpBK0KEHuTEcMHMccSuHXignMBXCUoOQVQJzhqXgghLJ8AbTi-b6xLUJdnrOfoK81wm8Ph6kPGrItf7gNO57IJIDYdIytqGKc2e5GQzGUlqFKuvjiTWvm8lZ4w79CE-gTyPRb_WYfmtc28wUJ5Xw7p6Q0-3qyqInX4wLAaJLa9EU417UOiSr0rf_SHdpzbH26qgiSPVYVBU5qUz9i5Ld8FANRvrgEH1yiK4O0UeH6EPSm8fveEj544cqoCdBqaE4uvz37v9g7wBk68ga</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117209716</pqid></control><display><type>article</type><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</creator><creatorcontrib>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</creatorcontrib><description>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted P  &lt; 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-74393-6</identifier><identifier>PMID: 39414835</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308 ; 692/499 ; 692/53 ; 692/617 ; 692/699 ; 692/700 ; Adult ; Aged ; Arteriosclerosis ; Asymptomatic ; Asymptomatic Diseases ; Asymptomatic intracranial atherosclerotic stenosis ; Atherosclerosis ; Blood Pressure ; Calibration ; Female ; Humanities and Social Sciences ; Humans ; Hypertension ; Hypertension - diagnosis ; Hypertension - epidemiology ; Intracranial Arteriosclerosis - diagnosis ; Intracranial Arteriosclerosis - epidemiology ; LASSO-Logistic regression ; Male ; Middle Aged ; multidisciplinary ; Neurologically healthy population ; Nomogram ; Nomograms ; Population studies ; Regression analysis ; Retrospective Studies ; Risk Factors ; ROC Curve ; Science ; Science (multidisciplinary) ; Stenosis</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.24259-11, Article 24259</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3117209716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3117209716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39414835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Liu, Xiaonan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Guo, Qirui</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Zhang, Longyou</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Hong, Yin</creatorcontrib><creatorcontrib>Wang, Anxin</creatorcontrib><creatorcontrib>Zheng, Huaguang</creatorcontrib><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted P  &lt; 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</description><subject>692/308</subject><subject>692/499</subject><subject>692/53</subject><subject>692/617</subject><subject>692/699</subject><subject>692/700</subject><subject>Adult</subject><subject>Aged</subject><subject>Arteriosclerosis</subject><subject>Asymptomatic</subject><subject>Asymptomatic Diseases</subject><subject>Asymptomatic intracranial atherosclerotic stenosis</subject><subject>Atherosclerosis</subject><subject>Blood Pressure</subject><subject>Calibration</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - diagnosis</subject><subject>Hypertension - epidemiology</subject><subject>Intracranial Arteriosclerosis - diagnosis</subject><subject>Intracranial Arteriosclerosis - epidemiology</subject><subject>LASSO-Logistic regression</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neurologically healthy population</subject><subject>Nomogram</subject><subject>Nomograms</subject><subject>Population studies</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stenosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvB37BNCFR-VKrjA2Zq1naxXjp3aCdL--3p3S2k54INted55PB6_TfMao_cYUfmhMMyV7BBhXc-oop141pwTxHhHKCHPH-3PmstSdqgOThTD6mVzRuvKJOXnze33NKUxw9QOKbdzdtabxcexhbKf5iVNsHjT-rhkMBmih9DCsnU5FRPqfAiWxcVUfKmqFtro1pxCGr2BEPbt1kFYtvt2TvMaKivFV82LAUJxl_frRfPry-efV9-6mx9fr68-3XSGEbJ0gxwsoorIfpBK0KEHuTEcMHMccSuHXignMBXCUoOQVQJzhqXgghLJ8AbTi-b6xLUJdnrOfoK81wm8Ph6kPGrItf7gNO57IJIDYdIytqGKc2e5GQzGUlqFKuvjiTWvm8lZ4w79CE-gTyPRb_WYfmtc28wUJ5Xw7p6Q0-3qyqInX4wLAaJLa9EU417UOiSr0rf_SHdpzbH26qgiSPVYVBU5qUz9i5Ld8FANRvrgEH1yiK4O0UeH6EPSm8fveEj544cqoCdBqaE4uvz37v9g7wBk68ga</recordid><startdate>20241016</startdate><enddate>20241016</enddate><creator>Li, Wenbo</creator><creator>Liu, Xiaonan</creator><creator>Liu, Yang</creator><creator>Liu, Jie</creator><creator>Guo, Qirui</creator><creator>Li, Jing</creator><creator>Zheng, Wei</creator><creator>Zhang, Longyou</creator><creator>Zhang, Ying</creator><creator>Hong, Yin</creator><creator>Wang, Anxin</creator><creator>Zheng, Huaguang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241016</creationdate><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><author>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/308</topic><topic>692/499</topic><topic>692/53</topic><topic>692/617</topic><topic>692/699</topic><topic>692/700</topic><topic>Adult</topic><topic>Aged</topic><topic>Arteriosclerosis</topic><topic>Asymptomatic</topic><topic>Asymptomatic Diseases</topic><topic>Asymptomatic intracranial atherosclerotic stenosis</topic><topic>Atherosclerosis</topic><topic>Blood Pressure</topic><topic>Calibration</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - diagnosis</topic><topic>Hypertension - epidemiology</topic><topic>Intracranial Arteriosclerosis - diagnosis</topic><topic>Intracranial Arteriosclerosis - epidemiology</topic><topic>LASSO-Logistic regression</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neurologically healthy population</topic><topic>Nomogram</topic><topic>Nomograms</topic><topic>Population studies</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Liu, Xiaonan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Guo, Qirui</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Zhang, Longyou</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Hong, Yin</creatorcontrib><creatorcontrib>Wang, Anxin</creatorcontrib><creatorcontrib>Zheng, Huaguang</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenbo</au><au>Liu, Xiaonan</au><au>Liu, Yang</au><au>Liu, Jie</au><au>Guo, Qirui</au><au>Li, Jing</au><au>Zheng, Wei</au><au>Zhang, Longyou</au><au>Zhang, Ying</au><au>Hong, Yin</au><au>Wang, Anxin</au><au>Zheng, Huaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-16</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>24259</spage><epage>11</epage><pages>24259-11</pages><artnum>24259</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted P  &lt; 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39414835</pmid><doi>10.1038/s41598-024-74393-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-10, Vol.14 (1), p.24259-11, Article 24259
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/308
692/499
692/53
692/617
692/699
692/700
Adult
Aged
Arteriosclerosis
Asymptomatic
Asymptomatic Diseases
Asymptomatic intracranial atherosclerotic stenosis
Atherosclerosis
Blood Pressure
Calibration
Female
Humanities and Social Sciences
Humans
Hypertension
Hypertension - diagnosis
Hypertension - epidemiology
Intracranial Arteriosclerosis - diagnosis
Intracranial Arteriosclerosis - epidemiology
LASSO-Logistic regression
Male
Middle Aged
multidisciplinary
Neurologically healthy population
Nomogram
Nomograms
Population studies
Regression analysis
Retrospective Studies
Risk Factors
ROC Curve
Science
Science (multidisciplinary)
Stenosis
title Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomogram%20for%20predicting%20asymptomatic%20intracranial%20atherosclerotic%20stenosis%20in%20a%20neurologically%20healthy%20population&rft.jtitle=Scientific%20reports&rft.au=Li,%20Wenbo&rft.date=2024-10-16&rft.volume=14&rft.issue=1&rft.spage=24259&rft.epage=11&rft.pages=24259-11&rft.artnum=24259&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-74393-6&rft_dat=%3Cproquest_doaj_%3E3117209716%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117209716&rft_id=info:pmid/39414835&rfr_iscdi=true