Loading…
Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population
Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were ret...
Saved in:
Published in: | Scientific reports 2024-10, Vol.14 (1), p.24259-11, Article 24259 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 24259 |
container_title | Scientific reports |
container_volume | 14 |
creator | Li, Wenbo Liu, Xiaonan Liu, Yang Liu, Jie Guo, Qirui Li, Jing Zheng, Wei Zhang, Longyou Zhang, Ying Hong, Yin Wang, Anxin Zheng, Huaguang |
description | Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted
P
|
doi_str_mv | 10.1038/s41598-024-74393-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90</doaj_id><sourcerecordid>3117209716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvB37BNCFR-VKrjA2Zq1naxXjp3aCdL--3p3S2k54INted55PB6_TfMao_cYUfmhMMyV7BBhXc-oop141pwTxHhHKCHPH-3PmstSdqgOThTD6mVzRuvKJOXnze33NKUxw9QOKbdzdtabxcexhbKf5iVNsHjT-rhkMBmih9DCsnU5FRPqfAiWxcVUfKmqFtro1pxCGr2BEPbt1kFYtvt2TvMaKivFV82LAUJxl_frRfPry-efV9-6mx9fr68-3XSGEbJ0gxwsoorIfpBK0KEHuTEcMHMccSuHXignMBXCUoOQVQJzhqXgghLJ8AbTi-b6xLUJdnrOfoK81wm8Ph6kPGrItf7gNO57IJIDYdIytqGKc2e5GQzGUlqFKuvjiTWvm8lZ4w79CE-gTyPRb_WYfmtc28wUJ5Xw7p6Q0-3qyqInX4wLAaJLa9EU417UOiSr0rf_SHdpzbH26qgiSPVYVBU5qUz9i5Ld8FANRvrgEH1yiK4O0UeH6EPSm8fveEj544cqoCdBqaE4uvz37v9g7wBk68ga</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117209716</pqid></control><display><type>article</type><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</creator><creatorcontrib>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</creatorcontrib><description>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted
P
< 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-74393-6</identifier><identifier>PMID: 39414835</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308 ; 692/499 ; 692/53 ; 692/617 ; 692/699 ; 692/700 ; Adult ; Aged ; Arteriosclerosis ; Asymptomatic ; Asymptomatic Diseases ; Asymptomatic intracranial atherosclerotic stenosis ; Atherosclerosis ; Blood Pressure ; Calibration ; Female ; Humanities and Social Sciences ; Humans ; Hypertension ; Hypertension - diagnosis ; Hypertension - epidemiology ; Intracranial Arteriosclerosis - diagnosis ; Intracranial Arteriosclerosis - epidemiology ; LASSO-Logistic regression ; Male ; Middle Aged ; multidisciplinary ; Neurologically healthy population ; Nomogram ; Nomograms ; Population studies ; Regression analysis ; Retrospective Studies ; Risk Factors ; ROC Curve ; Science ; Science (multidisciplinary) ; Stenosis</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.24259-11, Article 24259</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3117209716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3117209716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39414835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Liu, Xiaonan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Guo, Qirui</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Zhang, Longyou</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Hong, Yin</creatorcontrib><creatorcontrib>Wang, Anxin</creatorcontrib><creatorcontrib>Zheng, Huaguang</creatorcontrib><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted
P
< 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</description><subject>692/308</subject><subject>692/499</subject><subject>692/53</subject><subject>692/617</subject><subject>692/699</subject><subject>692/700</subject><subject>Adult</subject><subject>Aged</subject><subject>Arteriosclerosis</subject><subject>Asymptomatic</subject><subject>Asymptomatic Diseases</subject><subject>Asymptomatic intracranial atherosclerotic stenosis</subject><subject>Atherosclerosis</subject><subject>Blood Pressure</subject><subject>Calibration</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - diagnosis</subject><subject>Hypertension - epidemiology</subject><subject>Intracranial Arteriosclerosis - diagnosis</subject><subject>Intracranial Arteriosclerosis - epidemiology</subject><subject>LASSO-Logistic regression</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neurologically healthy population</subject><subject>Nomogram</subject><subject>Nomograms</subject><subject>Population studies</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stenosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvB37BNCFR-VKrjA2Zq1naxXjp3aCdL--3p3S2k54INted55PB6_TfMao_cYUfmhMMyV7BBhXc-oop141pwTxHhHKCHPH-3PmstSdqgOThTD6mVzRuvKJOXnze33NKUxw9QOKbdzdtabxcexhbKf5iVNsHjT-rhkMBmih9DCsnU5FRPqfAiWxcVUfKmqFtro1pxCGr2BEPbt1kFYtvt2TvMaKivFV82LAUJxl_frRfPry-efV9-6mx9fr68-3XSGEbJ0gxwsoorIfpBK0KEHuTEcMHMccSuHXignMBXCUoOQVQJzhqXgghLJ8AbTi-b6xLUJdnrOfoK81wm8Ph6kPGrItf7gNO57IJIDYdIytqGKc2e5GQzGUlqFKuvjiTWvm8lZ4w79CE-gTyPRb_WYfmtc28wUJ5Xw7p6Q0-3qyqInX4wLAaJLa9EU417UOiSr0rf_SHdpzbH26qgiSPVYVBU5qUz9i5Ld8FANRvrgEH1yiK4O0UeH6EPSm8fveEj544cqoCdBqaE4uvz37v9g7wBk68ga</recordid><startdate>20241016</startdate><enddate>20241016</enddate><creator>Li, Wenbo</creator><creator>Liu, Xiaonan</creator><creator>Liu, Yang</creator><creator>Liu, Jie</creator><creator>Guo, Qirui</creator><creator>Li, Jing</creator><creator>Zheng, Wei</creator><creator>Zhang, Longyou</creator><creator>Zhang, Ying</creator><creator>Hong, Yin</creator><creator>Wang, Anxin</creator><creator>Zheng, Huaguang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241016</creationdate><title>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</title><author>Li, Wenbo ; Liu, Xiaonan ; Liu, Yang ; Liu, Jie ; Guo, Qirui ; Li, Jing ; Zheng, Wei ; Zhang, Longyou ; Zhang, Ying ; Hong, Yin ; Wang, Anxin ; Zheng, Huaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/308</topic><topic>692/499</topic><topic>692/53</topic><topic>692/617</topic><topic>692/699</topic><topic>692/700</topic><topic>Adult</topic><topic>Aged</topic><topic>Arteriosclerosis</topic><topic>Asymptomatic</topic><topic>Asymptomatic Diseases</topic><topic>Asymptomatic intracranial atherosclerotic stenosis</topic><topic>Atherosclerosis</topic><topic>Blood Pressure</topic><topic>Calibration</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - diagnosis</topic><topic>Hypertension - epidemiology</topic><topic>Intracranial Arteriosclerosis - diagnosis</topic><topic>Intracranial Arteriosclerosis - epidemiology</topic><topic>LASSO-Logistic regression</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neurologically healthy population</topic><topic>Nomogram</topic><topic>Nomograms</topic><topic>Population studies</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stenosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenbo</creatorcontrib><creatorcontrib>Liu, Xiaonan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Guo, Qirui</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Zhang, Longyou</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Hong, Yin</creatorcontrib><creatorcontrib>Wang, Anxin</creatorcontrib><creatorcontrib>Zheng, Huaguang</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenbo</au><au>Liu, Xiaonan</au><au>Liu, Yang</au><au>Liu, Jie</au><au>Guo, Qirui</au><au>Li, Jing</au><au>Zheng, Wei</au><au>Zhang, Longyou</au><au>Zhang, Ying</au><au>Hong, Yin</au><au>Wang, Anxin</au><au>Zheng, Huaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-16</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>24259</spage><epage>11</epage><pages>24259-11</pages><artnum>24259</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Asymptomatic intracranial atherosclerotic stenosis (aICAS) is a major risk factor for cerebrovascular events. The study aims to construct and validate a nomogram for predicting the risk of aICAS. Participants who underwent health examinations at our center from September 2019 to August 2023 were retrospectively enrolled. The participants were randomly divided into a training set and a testing set in a 7:3 ratio. Firstly, in the training set, least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were performed to select variables that were used to establish a nomogram. Then, the receiver operating curves (ROC) and calibration curves were plotted to assess the model’s discriminative ability and performance. A total of 2563 neurologically healthy participants were enrolled. According to LASSO-Logistic regression analysis, age, fasting blood glucose (FBG), systolic blood pressure (SBP), hypertension, and carotid atherosclerosis (CAS) were significantly associated with aICAS in the multivariable model (adjusted
P
< 0.005). The area under the ROC of the training and testing sets was, respectively, 0.78 (95% CI: 0.73–0.82) and 0.65 (95% CI: 0.56–0.73). The calibration curves showed good homogeneity between the predicted and actual values. The nomogram, consisting of age, FBG, SBP, hypertension, and CAS, can accurately predict aICAS risk in a neurologically healthy population.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39414835</pmid><doi>10.1038/s41598-024-74393-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-10, Vol.14 (1), p.24259-11, Article 24259 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_177a285a248d44b3955ed5cfc1188d90 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/308 692/499 692/53 692/617 692/699 692/700 Adult Aged Arteriosclerosis Asymptomatic Asymptomatic Diseases Asymptomatic intracranial atherosclerotic stenosis Atherosclerosis Blood Pressure Calibration Female Humanities and Social Sciences Humans Hypertension Hypertension - diagnosis Hypertension - epidemiology Intracranial Arteriosclerosis - diagnosis Intracranial Arteriosclerosis - epidemiology LASSO-Logistic regression Male Middle Aged multidisciplinary Neurologically healthy population Nomogram Nomograms Population studies Regression analysis Retrospective Studies Risk Factors ROC Curve Science Science (multidisciplinary) Stenosis |
title | Nomogram for predicting asymptomatic intracranial atherosclerotic stenosis in a neurologically healthy population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomogram%20for%20predicting%20asymptomatic%20intracranial%20atherosclerotic%20stenosis%20in%20a%20neurologically%20healthy%20population&rft.jtitle=Scientific%20reports&rft.au=Li,%20Wenbo&rft.date=2024-10-16&rft.volume=14&rft.issue=1&rft.spage=24259&rft.epage=11&rft.pages=24259-11&rft.artnum=24259&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-74393-6&rft_dat=%3Cproquest_doaj_%3E3117209716%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-f8fd039287f8963f7a8bc5a14e505d8f769e61366d3c00d961541865632841b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117209716&rft_id=info:pmid/39414835&rfr_iscdi=true |