Loading…

Small interfering RNA targeting of keratin 17 reduces inflammation in imiquimod-induced psoriasis-like dermatitis

Psoriasis is a common chronic inflammatory skin disease with 2% to 3% prevalence worldwide and a heavy social-psychological burden for patients and their families. As the exact pathogenesis of psoriasis is still unknown, the current treatment is far from satisfactory. Thus, there is an urgent need t...

Full description

Saved in:
Bibliographic Details
Published in:Chinese medical journal 2020-11, Vol.133 (24), p.2910-2918
Main Authors: Xiao, Chun-Ying, Zhu, Zhen-Lai, Zhang, Chen, Fu, Meng, Qiao, Hong-Jiang, Wang, Gang, Dang, Er-Le
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Psoriasis is a common chronic inflammatory skin disease with 2% to 3% prevalence worldwide and a heavy social-psychological burden for patients and their families. As the exact pathogenesis of psoriasis is still unknown, the current treatment is far from satisfactory. Thus, there is an urgent need to find a more effective therapy for this disease. Keratin 17 (K17), a type I intermediate filament, is overexpressed in the psoriatic epidermis and plays a critical pathogenic role by stimulating T cells in psoriasis. Therefore, we hypothesized that inhibiting K17 may be a potential therapeutic approach for psoriasis. This study aimed to investigate the therapeutic effect of K17-specific small interfering RNA (siRNA) on mice with imiquimod (IMQ)-induced psoriasis-like dermatitis. Eight-week-old female BALB/c mice were administered a 5% IMQ cream on both ears to produce psoriatic dermatitis. On day 3, K17 siRNA was mixed with an emulsion matrix and applied topically to the left ears of the mice after IMQ application every day for 7 days. The right ears of the mice were treated in parallel with negative control (NC) siRNA. Inflammation was evaluated by gross ear thickness, histopathology, the infiltration of inflammatory cells (CD3+ T cells and neutrophils) using immunofluorescence, and the expression of cytokine production using real-time quantitative polymerase chain reaction. The obtained data were statistically evaluated by unpaired t-tests and a one-way analysis of variance. The severity of IMQ-induced dermatitis on K17 siRNA-treated mice ears was significantly lower than that on NC siRNA-treated mice ears, as evidenced by the alleviated ear inflammation phenotype, including decreased ear thickness, infiltration of inflammatory cells (CD3+ T cells and neutrophils), and inflammatory cytokine/chemokine expression levels (interleukin 17 [IL-17], IL-22, IL-23, C-X-C motif chemokine ligand 1, and C-C motif chemokine ligand 20) (P 
ISSN:0366-6999
2542-5641
DOI:10.1097/CM9.0000000000001197