Loading…

Identification of Small Airway Epithelium-Related Hub Genes in Chronic Obstructive Pulmonary Disease

Pulmonary small airway epithelia are the primary site of cellular and histological alterations in chronic obstructive pulmonary disease (COPD), while the potential therapeutic hub genes of pulmonary epithelia are rarely identified to elucidate profound alterations in the progression of the disease....

Full description

Saved in:
Bibliographic Details
Published in:International journal of chronic obstructive pulmonary disease 2022-01, Vol.17, p.3001-3015
Main Authors: Lin, Lanlan, Lin, Guofu, Chen, Xiaohui, Lin, Hai, Lin, Qinhui, Zeng, Yiming, Xu, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pulmonary small airway epithelia are the primary site of cellular and histological alterations in chronic obstructive pulmonary disease (COPD), while the potential therapeutic hub genes of pulmonary epithelia are rarely identified to elucidate profound alterations in the progression of the disease. Microarray dataset of GSE11906 containing small airway epithelia from 34 healthy non-smokers and 33 COPD patients was applied to screen differentially expressed genes (DEGs). Weighted gene correlation network analysis (WGCNA) was further used to identify the hub genes related to clinical features. Moreover, single-cell RNA sequencing data from GSE173896 and GSE167295 dataset were applied to explore the expression and distribution of the hub genes. The expression levels of hub genes in epithelial cells stimulated by cigarette smoke extract (CSE) were detected by RT-qPCR. Ninety-eight DEGs correlated with clinical features of COPD were identified via limma and WGCNA. Eight hub genes (including , , , , , , and ) that might exert an antioxidant role in COPD process were identified. Single-cell transcriptomic analysis indicated that the expressions of , , , and were significantly increased in the COPD group when compared with the normal group. Moreover, we found that the expression of was the most abundantly expressed in ciliated cells. RT-qPCR results indicated that the majority of candidate novel genes were significantly elevated when the epithelial cells were exposed to CSE. Through integrating limma, WGCNA, and protein-protein interaction (PPI) analysis, a total of eight candidate hub genes of pulmonary airway epithelia were identified in COPD. Moreover, single-cell transcriptomic analysis indicated that was enriched in ciliated cells, which may provide a new insight into the pathogenesis and treatment of COPD.
ISSN:1178-2005
1176-9106
1178-2005
DOI:10.2147/COPD.S377026