Loading…

Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria

Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2018-04, Vol.23 (3), p.667-672
Main Authors: Cano, Melissa, Holland, Steven C., Artier, Juliana, Burnap, Rob L., Ghirardi, Maria, Morgan, John A., Yu, Jianping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3
cites cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3
container_end_page 672
container_issue 3
container_start_page 667
container_title Cell reports (Cambridge)
container_volume 23
creator Cano, Melissa
Holland, Steven C.
Artier, Juliana
Burnap, Rob L.
Ghirardi, Maria
Morgan, John A.
Yu, Jianping
description Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. [Display omitted] •ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.
doi_str_mv 10.1016/j.celrep.2018.03.083
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124718304443</els_id><doaj_id>oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a</doaj_id><sourcerecordid>2027586629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXpP0Ao4sRlg8d2HOeCBKvSVirqgZ64WLYz2XqVtRfb2yr_Hm9TKk74Ymv0zZvneVX1HkgDBMTnbWNxirhvKAHZENYQyV5Vp5QCrIDy7vU_75PqPKUtKUcQgJ6_rU5oL0RPO3pa_bqcZhs26Oufs8_3mFyqtR_qH5i1CZPLWN8-YByn8Fivg8_RmUOp5VBfeIybuf6mJ-2t85va-Xo9ax-Mthmj0--qN6OeEp4_32fV3feLu_XV6ub28nr99WZlW9HlFZNorOg7IkfNyIhoLRiKBrVA6C012NGWSwkMJMCohe1Ni6NGaOVALTurrhfZIeit2ke303FWQTv1VAhxo3TMzk6ooDNytDDovmfcMNPbVmtOWoaEd6PQRevjohVSdirZ8n17b4P3aLMCzhgnvECfFmgfw-8Dpqx2LpU4yh4wHJKihHatFIL2BeULamNIKeL44g-IOgaptmoJUh2DVISpEmRp-_A84WB2OLw0_Y2tAF8WAMteHxzGo1f0FgcXj1aH4P4_4Q_3CrDv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027586629</pqid></control><display><type>article</type><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping</creator><creatorcontrib>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. [Display omitted] •ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.03.083</identifier><identifier>PMID: 29669272</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>09 BIOMASS FUELS ; cyanobacteria ; energy charge ; glycogen ; overflow metabolism ; photosynthesis ; synechocystis</subject><ispartof>Cell reports (Cambridge), 2018-04, Vol.23 (3), p.667-672</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</citedby><cites>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29669272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1433404$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cano, Melissa</creatorcontrib><creatorcontrib>Holland, Steven C.</creatorcontrib><creatorcontrib>Artier, Juliana</creatorcontrib><creatorcontrib>Burnap, Rob L.</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Morgan, John A.</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. [Display omitted] •ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</description><subject>09 BIOMASS FUELS</subject><subject>cyanobacteria</subject><subject>energy charge</subject><subject>glycogen</subject><subject>overflow metabolism</subject><subject>photosynthesis</subject><subject>synechocystis</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhSMEolXpP0Ao4sRlg8d2HOeCBKvSVirqgZ64WLYz2XqVtRfb2yr_Hm9TKk74Ymv0zZvneVX1HkgDBMTnbWNxirhvKAHZENYQyV5Vp5QCrIDy7vU_75PqPKUtKUcQgJ6_rU5oL0RPO3pa_bqcZhs26Oufs8_3mFyqtR_qH5i1CZPLWN8-YByn8Fivg8_RmUOp5VBfeIybuf6mJ-2t85va-Xo9ax-Mthmj0--qN6OeEp4_32fV3feLu_XV6ub28nr99WZlW9HlFZNorOg7IkfNyIhoLRiKBrVA6C012NGWSwkMJMCohe1Ni6NGaOVALTurrhfZIeit2ke303FWQTv1VAhxo3TMzk6ooDNytDDovmfcMNPbVmtOWoaEd6PQRevjohVSdirZ8n17b4P3aLMCzhgnvECfFmgfw-8Dpqx2LpU4yh4wHJKihHatFIL2BeULamNIKeL44g-IOgaptmoJUh2DVISpEmRp-_A84WB2OLw0_Y2tAF8WAMteHxzGo1f0FgcXj1aH4P4_4Q_3CrDv</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Cano, Melissa</creator><creator>Holland, Steven C.</creator><creator>Artier, Juliana</creator><creator>Burnap, Rob L.</creator><creator>Ghirardi, Maria</creator><creator>Morgan, John A.</creator><creator>Yu, Jianping</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180417</creationdate><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><author>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>09 BIOMASS FUELS</topic><topic>cyanobacteria</topic><topic>energy charge</topic><topic>glycogen</topic><topic>overflow metabolism</topic><topic>photosynthesis</topic><topic>synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Melissa</creatorcontrib><creatorcontrib>Holland, Steven C.</creatorcontrib><creatorcontrib>Artier, Juliana</creatorcontrib><creatorcontrib>Burnap, Rob L.</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Morgan, John A.</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Melissa</au><au>Holland, Steven C.</au><au>Artier, Juliana</au><au>Burnap, Rob L.</au><au>Ghirardi, Maria</au><au>Morgan, John A.</au><au>Yu, Jianping</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>23</volume><issue>3</issue><spage>667</spage><epage>672</epage><pages>667-672</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories. [Display omitted] •ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29669272</pmid><doi>10.1016/j.celrep.2018.03.083</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2018-04, Vol.23 (3), p.667-672
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects 09 BIOMASS FUELS
cyanobacteria
energy charge
glycogen
overflow metabolism
photosynthesis
synechocystis
title Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20Synthesis%20and%20Metabolite%20Overflow%20Contribute%20to%20Energy%20Balancing%20in%20Cyanobacteria&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Cano,%20Melissa&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2018-04-17&rft.volume=23&rft.issue=3&rft.spage=667&rft.epage=672&rft.pages=667-672&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.03.083&rft_dat=%3Cproquest_doaj_%3E2027586629%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027586629&rft_id=info:pmid/29669272&rfr_iscdi=true