Loading…
Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria
Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies...
Saved in:
Published in: | Cell reports (Cambridge) 2018-04, Vol.23 (3), p.667-672 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3 |
container_end_page | 672 |
container_issue | 3 |
container_start_page | 667 |
container_title | Cell reports (Cambridge) |
container_volume | 23 |
creator | Cano, Melissa Holland, Steven C. Artier, Juliana Burnap, Rob L. Ghirardi, Maria Morgan, John A. Yu, Jianping |
description | Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.
[Display omitted]
•ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism
Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis. |
doi_str_mv | 10.1016/j.celrep.2018.03.083 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124718304443</els_id><doaj_id>oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a</doaj_id><sourcerecordid>2027586629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXpP0Ao4sRlg8d2HOeCBKvSVirqgZ64WLYz2XqVtRfb2yr_Hm9TKk74Ymv0zZvneVX1HkgDBMTnbWNxirhvKAHZENYQyV5Vp5QCrIDy7vU_75PqPKUtKUcQgJ6_rU5oL0RPO3pa_bqcZhs26Oufs8_3mFyqtR_qH5i1CZPLWN8-YByn8Fivg8_RmUOp5VBfeIybuf6mJ-2t85va-Xo9ax-Mthmj0--qN6OeEp4_32fV3feLu_XV6ub28nr99WZlW9HlFZNorOg7IkfNyIhoLRiKBrVA6C012NGWSwkMJMCohe1Ni6NGaOVALTurrhfZIeit2ke303FWQTv1VAhxo3TMzk6ooDNytDDovmfcMNPbVmtOWoaEd6PQRevjohVSdirZ8n17b4P3aLMCzhgnvECfFmgfw-8Dpqx2LpU4yh4wHJKihHatFIL2BeULamNIKeL44g-IOgaptmoJUh2DVISpEmRp-_A84WB2OLw0_Y2tAF8WAMteHxzGo1f0FgcXj1aH4P4_4Q_3CrDv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027586629</pqid></control><display><type>article</type><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping</creator><creatorcontrib>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.
[Display omitted]
•ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism
Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.03.083</identifier><identifier>PMID: 29669272</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>09 BIOMASS FUELS ; cyanobacteria ; energy charge ; glycogen ; overflow metabolism ; photosynthesis ; synechocystis</subject><ispartof>Cell reports (Cambridge), 2018-04, Vol.23 (3), p.667-672</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</citedby><cites>FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29669272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1433404$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cano, Melissa</creatorcontrib><creatorcontrib>Holland, Steven C.</creatorcontrib><creatorcontrib>Artier, Juliana</creatorcontrib><creatorcontrib>Burnap, Rob L.</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Morgan, John A.</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.
[Display omitted]
•ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism
Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</description><subject>09 BIOMASS FUELS</subject><subject>cyanobacteria</subject><subject>energy charge</subject><subject>glycogen</subject><subject>overflow metabolism</subject><subject>photosynthesis</subject><subject>synechocystis</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFv1DAQhSMEolXpP0Ao4sRlg8d2HOeCBKvSVirqgZ64WLYz2XqVtRfb2yr_Hm9TKk74Ymv0zZvneVX1HkgDBMTnbWNxirhvKAHZENYQyV5Vp5QCrIDy7vU_75PqPKUtKUcQgJ6_rU5oL0RPO3pa_bqcZhs26Oufs8_3mFyqtR_qH5i1CZPLWN8-YByn8Fivg8_RmUOp5VBfeIybuf6mJ-2t85va-Xo9ax-Mthmj0--qN6OeEp4_32fV3feLu_XV6ub28nr99WZlW9HlFZNorOg7IkfNyIhoLRiKBrVA6C012NGWSwkMJMCohe1Ni6NGaOVALTurrhfZIeit2ke303FWQTv1VAhxo3TMzk6ooDNytDDovmfcMNPbVmtOWoaEd6PQRevjohVSdirZ8n17b4P3aLMCzhgnvECfFmgfw-8Dpqx2LpU4yh4wHJKihHatFIL2BeULamNIKeL44g-IOgaptmoJUh2DVISpEmRp-_A84WB2OLw0_Y2tAF8WAMteHxzGo1f0FgcXj1aH4P4_4Q_3CrDv</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Cano, Melissa</creator><creator>Holland, Steven C.</creator><creator>Artier, Juliana</creator><creator>Burnap, Rob L.</creator><creator>Ghirardi, Maria</creator><creator>Morgan, John A.</creator><creator>Yu, Jianping</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180417</creationdate><title>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</title><author>Cano, Melissa ; Holland, Steven C. ; Artier, Juliana ; Burnap, Rob L. ; Ghirardi, Maria ; Morgan, John A. ; Yu, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>09 BIOMASS FUELS</topic><topic>cyanobacteria</topic><topic>energy charge</topic><topic>glycogen</topic><topic>overflow metabolism</topic><topic>photosynthesis</topic><topic>synechocystis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Melissa</creatorcontrib><creatorcontrib>Holland, Steven C.</creatorcontrib><creatorcontrib>Artier, Juliana</creatorcontrib><creatorcontrib>Burnap, Rob L.</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Morgan, John A.</creatorcontrib><creatorcontrib>Yu, Jianping</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Melissa</au><au>Holland, Steven C.</au><au>Artier, Juliana</au><au>Burnap, Rob L.</au><au>Ghirardi, Maria</au><au>Morgan, John A.</au><au>Yu, Jianping</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-04-17</date><risdate>2018</risdate><volume>23</volume><issue>3</issue><spage>667</spage><epage>672</epage><pages>667-672</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.
[Display omitted]
•ATP levels in a cyanobacterium vary according to growth phase and environment•A glycogen-deficient strain shows difference in ATP levels and photosynthesis•Glycogen synthesis/degradation is an important cellular energy buffer•Metabolite overflow is an alternative energy dissipation mechanism
Cano et al. find that ATP levels in a cyanobacterium are dynamic in growth phases and respond to intracellular and environmental conditions. A glycogen mutant excretes organic acids and adjusts photosynthesis as alternative strategies to maintain energy homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29669272</pmid><doi>10.1016/j.celrep.2018.03.083</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2018-04, Vol.23 (3), p.667-672 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_17b8fc1da9934b3b9c5aa4053e047f6a |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | 09 BIOMASS FUELS cyanobacteria energy charge glycogen overflow metabolism photosynthesis synechocystis |
title | Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20Synthesis%20and%20Metabolite%20Overflow%20Contribute%20to%20Energy%20Balancing%20in%20Cyanobacteria&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Cano,%20Melissa&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2018-04-17&rft.volume=23&rft.issue=3&rft.spage=667&rft.epage=672&rft.pages=667-672&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.03.083&rft_dat=%3Cproquest_doaj_%3E2027586629%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-38ebc69708fa30feecc1b2ebea6e19c2be725488131811fa6c9b5efae158d2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2027586629&rft_id=info:pmid/29669272&rfr_iscdi=true |