Loading…
Enhancing the efficacy of letrozole-loaded PEGylated nanoliposomes against breast cancer cells: In vitro study
Considering its overall impact on human health, letrozole (Let) has been described as having significant efficacy that could be improved by developing drug delivery systems. Considering the side effects of Let, this study aims to encapsulate Let in liposomes and PEGylated liposome nanoparticles (Lip...
Saved in:
Published in: | Heliyon 2024-05, Vol.10 (9), p.e30503-e30503, Article e30503 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considering its overall impact on human health, letrozole (Let) has been described as having significant efficacy that could be improved by developing drug delivery systems. Considering the side effects of Let, this study aims to encapsulate Let in liposomes and PEGylated liposome nanoparticles (Lipo-Let-PEG) and evaluate the cytotoxic effects on the MCF-7 breast cancer cell line. For this purpose, the Lipo-Let-PEG formulation was designed and characterized by SEM, DLS, and FTIR methods, and the drug release from the optimized formulation and the stability of the optimized Lipo-Let-PEG were measured. Furthermore, the cytotoxicity and apoptotic studies were performed using MTT assay and flow cytometric analysis. According to the experimental data, the vesicle size and EE% were 170.05 ± 4.15 nm and 87.21 ± 1.36 %, respectively. The cumulative release from Lipo-Let-PEG at pH 5.4 and 7.4 was also approximately 60 % and 50 %, respectively. MTT results showed that Lip-Let-PEG produced more drug cytotoxicity than Lip-Let against MCF-7 cancer cells and was more compatible with normal cells. The results of apoptosis and cell cycle arrest using flow cytometry show that Lipo-Let-PEG caused the most significant increase in apoptotic rates and cell cycle arrest in cancer cells compared to other treated groups. In conclusion, Lipo-Let-PEG can be used as an anticancer agent by arresting cell cycle progression and inducing apoptosis, which can be applied in future studies to prevent breast cancer development. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e30503 |