Loading…

Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing

•Study tackles the problem of accurate likelihood ratios in surveillance video face recognition.•Proposes a frame selection method to enhance forensic face recognition by pairing frames based on quality and face attributes.•Optimal frame selection framework validated across various models and datase...

Full description

Saved in:
Bibliographic Details
Published in:Forensic science international. Synergy 2024-01, Vol.8, p.100458-100458, Article 100458
Main Authors: Macarulla Rodriguez, Andrea, Geradts, Zeno, Worring, Marcel, Unzueta, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3948-3a43339247492c8b788fff39f1d53e17562b6fb4e36abba4b5abe2ff9f8167bb3
container_end_page 100458
container_issue
container_start_page 100458
container_title Forensic science international. Synergy
container_volume 8
creator Macarulla Rodriguez, Andrea
Geradts, Zeno
Worring, Marcel
Unzueta, Luis
description •Study tackles the problem of accurate likelihood ratios in surveillance video face recognition.•Proposes a frame selection method to enhance forensic face recognition by pairing frames based on quality and face attributes.•Optimal frame selection framework validated across various models and datasets.•As additional result, the study reveals that the use of super-resolution preprocessing via CodeFormer adversely affects the reliability of forensic face recognition. In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (Cllr) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar Cllr values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased Cllr, undermining evidence reliability, advising against its use in such forensic applications.
doi_str_mv 10.1016/j.fsisyn.2024.100458
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_17cde47d61d24c5dbaa628c848f29e86</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589871X24000056</els_id><doaj_id>oai_doaj_org_article_17cde47d61d24c5dbaa628c848f29e86</doaj_id><sourcerecordid>2958290494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3948-3a43339247492c8b788fff39f1d53e17562b6fb4e36abba4b5abe2ff9f8167bb3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpP0DISzYz-JXY3oBQxWOkSmxAYmf5cT31kMSDnUSaf4-HlKrdsLJ177nnXp2vaV4TvCWYdO8O21BiOY1biimvJcxb-ay5pK1UGynIz-eP_hfNdSkHjDEVimPcvWwumORSMEwvG7cbjjkt4FEff0Ef71LyKJsppoJCyigYByiDS_sx1uKI4ojKnBeIfW_G2luih4TsCQ1zP8UhedOjAGaaM6CjiTmO-1fNi2D6Atf371Xz4_On7zdfN7ffvuxuPt5uHFNcbpjhjDFFueCKOmmFlCEEpgLxLQMi2o7aLlgOrDPWGm5bY4GGoIIknbCWXTW71dcnc9DHHAeTTzqZqP8WUt5rk6foetBEOA9c-I54yl3rrTEdla7GEqgC2VWvD6vXcbYDeAfjlE3_xPRpZ4x3ep8WTbBiEouzw9t7h5x-z1AmPcTi4BwbpLloqlpJFeaKVylfpS6nUjKEhz0E6zNvfdArb33mrVfedezN4xsfhv7RrYL3qwBq6kuErIuLUKn5WJFONZb4_w1_ANQJwPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958290494</pqid></control><display><type>article</type><title>Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing</title><source>PubMed Central (Open Access)</source><source>ScienceDirect®</source><creator>Macarulla Rodriguez, Andrea ; Geradts, Zeno ; Worring, Marcel ; Unzueta, Luis</creator><creatorcontrib>Macarulla Rodriguez, Andrea ; Geradts, Zeno ; Worring, Marcel ; Unzueta, Luis</creatorcontrib><description>•Study tackles the problem of accurate likelihood ratios in surveillance video face recognition.•Proposes a frame selection method to enhance forensic face recognition by pairing frames based on quality and face attributes.•Optimal frame selection framework validated across various models and datasets.•As additional result, the study reveals that the use of super-resolution preprocessing via CodeFormer adversely affects the reliability of forensic face recognition. In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (Cllr) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar Cllr values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased Cllr, undermining evidence reliability, advising against its use in such forensic applications.</description><identifier>ISSN: 2589-871X</identifier><identifier>EISSN: 2589-871X</identifier><identifier>DOI: 10.1016/j.fsisyn.2024.100458</identifier><identifier>PMID: 38487302</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Face image quality ; Face recognition ; Likelihood ratio ; Multi-modal analysis ; Super resolution ; Video processing</subject><ispartof>Forensic science international. Synergy, 2024-01, Vol.8, p.100458-100458, Article 100458</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3948-3a43339247492c8b788fff39f1d53e17562b6fb4e36abba4b5abe2ff9f8167bb3</cites><orcidid>0000-0002-7087-9503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938076/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589871X24000056$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38487302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macarulla Rodriguez, Andrea</creatorcontrib><creatorcontrib>Geradts, Zeno</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><title>Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing</title><title>Forensic science international. Synergy</title><addtitle>Forensic Sci Int Synerg</addtitle><description>•Study tackles the problem of accurate likelihood ratios in surveillance video face recognition.•Proposes a frame selection method to enhance forensic face recognition by pairing frames based on quality and face attributes.•Optimal frame selection framework validated across various models and datasets.•As additional result, the study reveals that the use of super-resolution preprocessing via CodeFormer adversely affects the reliability of forensic face recognition. In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (Cllr) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar Cllr values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased Cllr, undermining evidence reliability, advising against its use in such forensic applications.</description><subject>Face image quality</subject><subject>Face recognition</subject><subject>Likelihood ratio</subject><subject>Multi-modal analysis</subject><subject>Super resolution</subject><subject>Video processing</subject><issn>2589-871X</issn><issn>2589-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpP0DISzYz-JXY3oBQxWOkSmxAYmf5cT31kMSDnUSaf4-HlKrdsLJ177nnXp2vaV4TvCWYdO8O21BiOY1biimvJcxb-ay5pK1UGynIz-eP_hfNdSkHjDEVimPcvWwumORSMEwvG7cbjjkt4FEff0Ef71LyKJsppoJCyigYByiDS_sx1uKI4ojKnBeIfW_G2luih4TsCQ1zP8UhedOjAGaaM6CjiTmO-1fNi2D6Atf371Xz4_On7zdfN7ffvuxuPt5uHFNcbpjhjDFFueCKOmmFlCEEpgLxLQMi2o7aLlgOrDPWGm5bY4GGoIIknbCWXTW71dcnc9DHHAeTTzqZqP8WUt5rk6foetBEOA9c-I54yl3rrTEdla7GEqgC2VWvD6vXcbYDeAfjlE3_xPRpZ4x3ep8WTbBiEouzw9t7h5x-z1AmPcTi4BwbpLloqlpJFeaKVylfpS6nUjKEhz0E6zNvfdArb33mrVfedezN4xsfhv7RrYL3qwBq6kuErIuLUKn5WJFONZb4_w1_ANQJwPQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Macarulla Rodriguez, Andrea</creator><creator>Geradts, Zeno</creator><creator>Worring, Marcel</creator><creator>Unzueta, Luis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7087-9503</orcidid></search><sort><creationdate>20240101</creationdate><title>Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing</title><author>Macarulla Rodriguez, Andrea ; Geradts, Zeno ; Worring, Marcel ; Unzueta, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3948-3a43339247492c8b788fff39f1d53e17562b6fb4e36abba4b5abe2ff9f8167bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Face image quality</topic><topic>Face recognition</topic><topic>Likelihood ratio</topic><topic>Multi-modal analysis</topic><topic>Super resolution</topic><topic>Video processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macarulla Rodriguez, Andrea</creatorcontrib><creatorcontrib>Geradts, Zeno</creatorcontrib><creatorcontrib>Worring, Marcel</creatorcontrib><creatorcontrib>Unzueta, Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Forensic science international. Synergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macarulla Rodriguez, Andrea</au><au>Geradts, Zeno</au><au>Worring, Marcel</au><au>Unzueta, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing</atitle><jtitle>Forensic science international. Synergy</jtitle><addtitle>Forensic Sci Int Synerg</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>8</volume><spage>100458</spage><epage>100458</epage><pages>100458-100458</pages><artnum>100458</artnum><issn>2589-871X</issn><eissn>2589-871X</eissn><abstract>•Study tackles the problem of accurate likelihood ratios in surveillance video face recognition.•Proposes a frame selection method to enhance forensic face recognition by pairing frames based on quality and face attributes.•Optimal frame selection framework validated across various models and datasets.•As additional result, the study reveals that the use of super-resolution preprocessing via CodeFormer adversely affects the reliability of forensic face recognition. In forensic and security scenarios, accurate facial recognition in surveillance videos, often challenged by variations in pose, illumination, and expression, is essential. Traditional manual comparison methods lack standardization, revealing a critical gap in evidence reliability. We propose an enhanced images-to-video recognition approach, pairing facial images with attributes like pose and quality. Utilizing datasets such as ENFSI 2015, SCFace, XQLFW, ChokePoint, and ForenFace, we assess evidence strength using calibration methods for likelihood ratio estimation. Three models—ArcFace, FaceNet, and QMagFace—undergo validation, with the log-likelihood ratio cost (Cllr) as a key metric. Results indicate that prioritizing high-quality frames and aligning attributes with reference images optimizes recognition, yielding similar Cllr values to the top 25% best frames approach. A combined embedding weighted by frame quality emerges as the second-best method. Upon preprocessing facial images with the super resolution CodeFormer, it unexpectedly increased Cllr, undermining evidence reliability, advising against its use in such forensic applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38487302</pmid><doi>10.1016/j.fsisyn.2024.100458</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7087-9503</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-871X
ispartof Forensic science international. Synergy, 2024-01, Vol.8, p.100458-100458, Article 100458
issn 2589-871X
2589-871X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_17cde47d61d24c5dbaa628c848f29e86
source PubMed Central (Open Access); ScienceDirect®
subjects Face image quality
Face recognition
Likelihood ratio
Multi-modal analysis
Super resolution
Video processing
title Improved likelihood ratios for face recognition in surveillance video by multimodal feature pairing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20likelihood%20ratios%20for%20face%20recognition%20in%20surveillance%20video%20by%20multimodal%20feature%20pairing&rft.jtitle=Forensic%20science%20international.%20Synergy&rft.au=Macarulla%20Rodriguez,%20Andrea&rft.date=2024-01-01&rft.volume=8&rft.spage=100458&rft.epage=100458&rft.pages=100458-100458&rft.artnum=100458&rft.issn=2589-871X&rft.eissn=2589-871X&rft_id=info:doi/10.1016/j.fsisyn.2024.100458&rft_dat=%3Cproquest_doaj_%3E2958290494%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3948-3a43339247492c8b788fff39f1d53e17562b6fb4e36abba4b5abe2ff9f8167bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2958290494&rft_id=info:pmid/38487302&rfr_iscdi=true