Loading…

Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network

Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneousl...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2021-09, Vol.11 (9), p.1048
Main Authors: Huang, Che-Hsuan, Lee, Pei-Hsuan, Chang, Shu-Hsiu, Kuo, Hao-Chung, Sun, Chia-Wei, Lin, Chien-Chung, Tsai, Chun-Lin, Liu, Xinke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213
cites cdi_FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213
container_end_page
container_issue 9
container_start_page 1048
container_title Crystals (Basel)
container_volume 11
creator Huang, Che-Hsuan
Lee, Pei-Hsuan
Chang, Shu-Hsiu
Kuo, Hao-Chung
Sun, Chia-Wei
Lin, Chien-Chung
Tsai, Chun-Lin
Liu, Xinke
description Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).
doi_str_mv 10.3390/cryst11091048
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_17d705d6930e4a8887e8eb37a1a97b00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_17d705d6930e4a8887e8eb37a1a97b00</doaj_id><sourcerecordid>2576386835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213</originalsourceid><addsrcrecordid>eNpVUcFu2zAMNYoNaNH1uLuBnb1JoS3Kx6Dt2gDpelnOAmPRqbLE8iQ5RX-g3121KYaOl0eQj-8RZFF8leI7QCt-dOEpJilFK0WtT4qzmUCoamhmnz7kp8VFjFuRA5VAlGfF83xKfk-JbXk_JtfRrlwMceQuOT-Ud5wevC17H8ql2zyk6nrvUnLDprxy3nJ5xX1mZkjvA6v42lwNcRo5HFzMsjc8cKDkDlzO7YFDpOCyyy-ewhukRx_-fCk-97SLfPGO58Xq5_Xvy9tqeX-zuJwvqw5QpArXLYlOSknUkmS2GpRCrLkXQkIrgRgtQd_UXb_WKBW1gLbvrABUaibhvFgcda2nrRmD21N4Mp6ceSv4sDEU8hl2bCRaFI1VLQiuSWuNrHkNSJJaXAuRtb4dtcbg_04ck9n6KQx5fTNrUIFWGprMqo6sLvgYA_f_XKUwr58z_30OXgDbBo25</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576386835</pqid></control><display><type>article</type><title>Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Huang, Che-Hsuan ; Lee, Pei-Hsuan ; Chang, Shu-Hsiu ; Kuo, Hao-Chung ; Sun, Chia-Wei ; Lin, Chien-Chung ; Tsai, Chun-Lin ; Liu, Xinke</creator><creatorcontrib>Huang, Che-Hsuan ; Lee, Pei-Hsuan ; Chang, Shu-Hsiu ; Kuo, Hao-Chung ; Sun, Chia-Wei ; Lin, Chien-Chung ; Tsai, Chun-Lin ; Liu, Xinke</creatorcontrib><description>Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst11091048</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>abnormal detection ; Algorithms ; Datasets ; Defects ; Factories ; GAN ; Inspection ; LED ; Light emitting diodes ; Machine learning ; Manufacturing ; Neural networks ; Object recognition ; unsupervised learning</subject><ispartof>Crystals (Basel), 2021-09, Vol.11 (9), p.1048</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213</citedby><cites>FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213</cites><orcidid>0000-0001-8656-1922 ; 0000-0001-6767-6046 ; 0000-0002-9373-4649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576386835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576386835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Huang, Che-Hsuan</creatorcontrib><creatorcontrib>Lee, Pei-Hsuan</creatorcontrib><creatorcontrib>Chang, Shu-Hsiu</creatorcontrib><creatorcontrib>Kuo, Hao-Chung</creatorcontrib><creatorcontrib>Sun, Chia-Wei</creatorcontrib><creatorcontrib>Lin, Chien-Chung</creatorcontrib><creatorcontrib>Tsai, Chun-Lin</creatorcontrib><creatorcontrib>Liu, Xinke</creatorcontrib><title>Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network</title><title>Crystals (Basel)</title><description>Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).</description><subject>abnormal detection</subject><subject>Algorithms</subject><subject>Datasets</subject><subject>Defects</subject><subject>Factories</subject><subject>GAN</subject><subject>Inspection</subject><subject>LED</subject><subject>Light emitting diodes</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>unsupervised learning</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFu2zAMNYoNaNH1uLuBnb1JoS3Kx6Dt2gDpelnOAmPRqbLE8iQ5RX-g3121KYaOl0eQj-8RZFF8leI7QCt-dOEpJilFK0WtT4qzmUCoamhmnz7kp8VFjFuRA5VAlGfF83xKfk-JbXk_JtfRrlwMceQuOT-Ud5wevC17H8ql2zyk6nrvUnLDprxy3nJ5xX1mZkjvA6v42lwNcRo5HFzMsjc8cKDkDlzO7YFDpOCyyy-ewhukRx_-fCk-97SLfPGO58Xq5_Xvy9tqeX-zuJwvqw5QpArXLYlOSknUkmS2GpRCrLkXQkIrgRgtQd_UXb_WKBW1gLbvrABUaibhvFgcda2nrRmD21N4Mp6ceSv4sDEU8hl2bCRaFI1VLQiuSWuNrHkNSJJaXAuRtb4dtcbg_04ck9n6KQx5fTNrUIFWGprMqo6sLvgYA_f_XKUwr58z_30OXgDbBo25</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Huang, Che-Hsuan</creator><creator>Lee, Pei-Hsuan</creator><creator>Chang, Shu-Hsiu</creator><creator>Kuo, Hao-Chung</creator><creator>Sun, Chia-Wei</creator><creator>Lin, Chien-Chung</creator><creator>Tsai, Chun-Lin</creator><creator>Liu, Xinke</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8656-1922</orcidid><orcidid>https://orcid.org/0000-0001-6767-6046</orcidid><orcidid>https://orcid.org/0000-0002-9373-4649</orcidid></search><sort><creationdate>20210901</creationdate><title>Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network</title><author>Huang, Che-Hsuan ; Lee, Pei-Hsuan ; Chang, Shu-Hsiu ; Kuo, Hao-Chung ; Sun, Chia-Wei ; Lin, Chien-Chung ; Tsai, Chun-Lin ; Liu, Xinke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>abnormal detection</topic><topic>Algorithms</topic><topic>Datasets</topic><topic>Defects</topic><topic>Factories</topic><topic>GAN</topic><topic>Inspection</topic><topic>LED</topic><topic>Light emitting diodes</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Che-Hsuan</creatorcontrib><creatorcontrib>Lee, Pei-Hsuan</creatorcontrib><creatorcontrib>Chang, Shu-Hsiu</creatorcontrib><creatorcontrib>Kuo, Hao-Chung</creatorcontrib><creatorcontrib>Sun, Chia-Wei</creatorcontrib><creatorcontrib>Lin, Chien-Chung</creatorcontrib><creatorcontrib>Tsai, Chun-Lin</creatorcontrib><creatorcontrib>Liu, Xinke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Che-Hsuan</au><au>Lee, Pei-Hsuan</au><au>Chang, Shu-Hsiu</au><au>Kuo, Hao-Chung</au><au>Sun, Chia-Wei</au><au>Lin, Chien-Chung</au><au>Tsai, Chun-Lin</au><au>Liu, Xinke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network</atitle><jtitle>Crystals (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><spage>1048</spage><pages>1048-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Many automated optical inspection (AOI) companies use supervised object detection networks to inspect items, a technique which expends tremendous time and energy to mark defectives. Therefore, we propose an AOI system which uses an unsupervised learning network as the base algorithm to simultaneously generate anomaly alerts and reduce labeling costs. This AOI system works by deploying the GANomaly neural network and the supervised network to the manufacturing system. To improve the ability to distinguish anomaly items from normal items in industry and enhance the overall performance of the manufacturing process, the system uses the structural similarity index (SSIM) as part of the loss function as well as the scoring parameters. Thus, the proposed system will achieve the requirements of smart factories in the future (Industry 4.0).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst11091048</doi><orcidid>https://orcid.org/0000-0001-8656-1922</orcidid><orcidid>https://orcid.org/0000-0001-6767-6046</orcidid><orcidid>https://orcid.org/0000-0002-9373-4649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2021-09, Vol.11 (9), p.1048
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_17d705d6930e4a8887e8eb37a1a97b00
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects abnormal detection
Algorithms
Datasets
Defects
Factories
GAN
Inspection
LED
Light emitting diodes
Machine learning
Manufacturing
Neural networks
Object recognition
unsupervised learning
title Automated Optical Inspection Method for Light-Emitting Diode Defect Detection Using Unsupervised Generative Adversarial Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Optical%20Inspection%20Method%20for%20Light-Emitting%20Diode%20Defect%20Detection%20Using%20Unsupervised%20Generative%20Adversarial%20Neural%20Network&rft.jtitle=Crystals%20(Basel)&rft.au=Huang,%20Che-Hsuan&rft.date=2021-09-01&rft.volume=11&rft.issue=9&rft.spage=1048&rft.pages=1048-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst11091048&rft_dat=%3Cproquest_doaj_%3E2576386835%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-7b9a0c111aa9a1eed8366774ef0013913ae7da3f54cfb8716a937dfcd03766213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576386835&rft_id=info:pmid/&rfr_iscdi=true