Loading…

Feline microRNAome in ovary and testis: Exploration of in-silico miRNA-mRNA networks involved in gonadal function and cellular stress response

The aim of the study was to perform the first in-depth analysis of miRNAs in ovarian and testicular tissues of the domestic cat, a critical biomedical model. Specifically, potential miRNA involvement was explored in gonadal function, testis development, and cellular stress response to preservation p...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics 2022-09, Vol.13, p.1009220-1009220
Main Authors: Amelkina, Olga, Silva, Andreia M. da, Silva, Alexandre R., Comizzoli, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the study was to perform the first in-depth analysis of miRNAs in ovarian and testicular tissues of the domestic cat, a critical biomedical model. Specifically, potential miRNA involvement was explored in gonadal function, testis development, and cellular stress response to preservation protocols. We performed miRNA-sequencing on 20 ovarian and 20 testicular samples from 15 cats, including different ages and tissue treatments. Using fresh tissues ( n = 15), we confirmed gonadal expression of 183 miRNA precursors and discovered additional 52 novel feline candidate precursors. We integrated the mRNA data from our previous study on the same age and treatment groups to create in-silico miRNA-mRNA networks and their functional enrichment, which allows comprehensive exploration into possible miRNA functions in cat gonads. Clusters of miRNAs united by shared differentially expressed mRNA targets are potentially involved in testicular development and spermatogenesis. MicroRNAs could play a significant role in ovarian tissue response to stress from microwave-assisted dehydration, with smaller roles in cellular response to vitrification in both ovary and testis. This new list of miRNAs with potential function in cat gonads is a major step towards understanding the gonadal biology, as well as optimizing fertility preservation protocols.
ISSN:1664-8021
1664-8021
DOI:10.3389/fgene.2022.1009220