Loading…

PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain

The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by e...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-08, Vol.12 (1), p.5106-13, Article 5106
Main Authors: Wen, Maorong, Cao, Yunlei, Wu, Bin, Xiao, Taoran, Cao, Ruiyu, Wang, Qian, Liu, Xiwei, Xue, Hongjuan, Yu, Yang, Lin, Jialing, Xu, Chenqi, Xu, Jie, OuYang, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies. The cytoplasmic domain of PD-L1 (PD-L1-CD) is involved in regulating PD-L1 stability and degradation. Here the authors show that membrane binding of PD-L1-CD mediates the cellular levels of PD-L1, while metformin can disrupt the interaction between PD-L1-CD and the membrane to reduce PD-L1 levels.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25416-7