Loading…

Study on Electromigration Effects and IMC Formation on Cu–Sn Films Due to Current Stress and Temperature

In this study, the effects of electromigration on a solder/copper substrate due to temperature and current density stress were investigated. The copper–tin (Cu–Sn) film samples were subjected under a fixed current and various heating conditions (130 °C and 180 °C) and current densities (different cr...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-12, Vol.10 (24), p.8893
Main Authors: Wang, Zhao-Ying, Dang, Nhat Minh, Wang, Po-Hsun, Chen, Terry Yuan-Fang, Lin, Ming-Tzer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the effects of electromigration on a solder/copper substrate due to temperature and current density stress were investigated. The copper–tin (Cu–Sn) film samples were subjected under a fixed current and various heating conditions (130 °C and 180 °C) and current densities (different cross-sectional areas). The micro-structural changes and intermetallic compound (IMC) formation were observed, and failure phenomena (brittle cracks, voids, bumps, etc.) on the structures of samples were discussed. The results showed that the IMC thickness increased as the temperature and current density increased. Moreover, it was found that the higher the temperature and current density was, the greater the defects that were observed. By adjusting the designs of sample structures, the stress from the current density can be decreased, resulting in reduced failure phenomena, such as signal delay, distortion, and short circuiting after long-term use of the material components. A detailed IMC growth mechanism and defect formation were also closely studied and discussed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10248893