Loading…
Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning
Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reco...
Saved in:
Published in: | Journal of imaging 2022-03, Vol.8 (3), p.77 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663 |
container_end_page | |
container_issue | 3 |
container_start_page | 77 |
container_title | Journal of imaging |
container_volume | 8 |
creator | Busi, Matteo Kehl, Christian Frisvad, Jeppe R Olsen, Ulrik L |
description | Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners. |
doi_str_mv | 10.3390/jimaging8030077 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645</doaj_id><sourcerecordid>2644010662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</originalsourceid><addsrcrecordid>eNpdUU1r3DAUFKUlCUnOuRVDL7040ffHpRC2TZuypdAmkJuQpeetF6-1lexA_n3lbJqvg5CYN5o38x5CJwSfMmbw2brbuFU3rDRmGCv1Bh1QRljNGbt5--y9j45zXmOMiaHlmD20zwSjXDJ6gL7_gNH11Xkau9b5sfoFYfJjF4eqG6rfW_BjKuWbOrm7anFVXefS7wn_DLCtluDSUOAj9K51fYbjh_sQXV98uVp8q5c_v14uzpe151qNtW9AKkUCV4Qw7mTQTBvKiWo8C22xyAw1JBghQuuLUWggCKCi8cJoJyU7RJc73RDd2m5TmUK6s9F19h6IaWVdieN7sERjTZR0ymHBdUOdDkRr7T2XHksuitanndZ2ajYQPAxzrheiLytD98eu4q3VRhDJZzMfHwRS_DtBHu2myx763g0Qp2yp5BwTLCUt1A-vqOs4paGMamZRToUhs6OzHcunmHOC9tEMwXZeu3219vLj_fMMj_z_S2b_AFSZp9g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642425915</pqid></control><display><type>article</type><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</creator><creatorcontrib>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</creatorcontrib><description>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging8030077</identifier><identifier>PMID: 35324632</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Attenuation coefficients ; Channels ; Computed tomography ; Deep learning ; Energy ; Energy resolution ; Image reconstruction ; metal artifact reduction ; Metals ; Methods ; Noise ; non-destructive evaluation ; Nondestructive testing ; Photons ; Reduction (metal working) ; Simulation ; Software ; Spectra ; spectral convolutional neural networks ; spectral deep learning ; spectral X-ray CT</subject><ispartof>Journal of imaging, 2022-03, Vol.8 (3), p.77</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</citedby><cites>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</cites><orcidid>0000-0001-8195-7477 ; 0000-0002-0603-3669 ; 0000-0003-4200-1450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642425915/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642425915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35324632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busi, Matteo</creatorcontrib><creatorcontrib>Kehl, Christian</creatorcontrib><creatorcontrib>Frisvad, Jeppe R</creatorcontrib><creatorcontrib>Olsen, Ulrik L</creatorcontrib><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</description><subject>Algorithms</subject><subject>Attenuation coefficients</subject><subject>Channels</subject><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Energy</subject><subject>Energy resolution</subject><subject>Image reconstruction</subject><subject>metal artifact reduction</subject><subject>Metals</subject><subject>Methods</subject><subject>Noise</subject><subject>non-destructive evaluation</subject><subject>Nondestructive testing</subject><subject>Photons</subject><subject>Reduction (metal working)</subject><subject>Simulation</subject><subject>Software</subject><subject>Spectra</subject><subject>spectral convolutional neural networks</subject><subject>spectral deep learning</subject><subject>spectral X-ray CT</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1r3DAUFKUlCUnOuRVDL7040ffHpRC2TZuypdAmkJuQpeetF6-1lexA_n3lbJqvg5CYN5o38x5CJwSfMmbw2brbuFU3rDRmGCv1Bh1QRljNGbt5--y9j45zXmOMiaHlmD20zwSjXDJ6gL7_gNH11Xkau9b5sfoFYfJjF4eqG6rfW_BjKuWbOrm7anFVXefS7wn_DLCtluDSUOAj9K51fYbjh_sQXV98uVp8q5c_v14uzpe151qNtW9AKkUCV4Qw7mTQTBvKiWo8C22xyAw1JBghQuuLUWggCKCi8cJoJyU7RJc73RDd2m5TmUK6s9F19h6IaWVdieN7sERjTZR0ymHBdUOdDkRr7T2XHksuitanndZ2ajYQPAxzrheiLytD98eu4q3VRhDJZzMfHwRS_DtBHu2myx763g0Qp2yp5BwTLCUt1A-vqOs4paGMamZRToUhs6OzHcunmHOC9tEMwXZeu3219vLj_fMMj_z_S2b_AFSZp9g</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Busi, Matteo</creator><creator>Kehl, Christian</creator><creator>Frisvad, Jeppe R</creator><creator>Olsen, Ulrik L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8195-7477</orcidid><orcidid>https://orcid.org/0000-0002-0603-3669</orcidid><orcidid>https://orcid.org/0000-0003-4200-1450</orcidid></search><sort><creationdate>20220317</creationdate><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><author>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Attenuation coefficients</topic><topic>Channels</topic><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Energy</topic><topic>Energy resolution</topic><topic>Image reconstruction</topic><topic>metal artifact reduction</topic><topic>Metals</topic><topic>Methods</topic><topic>Noise</topic><topic>non-destructive evaluation</topic><topic>Nondestructive testing</topic><topic>Photons</topic><topic>Reduction (metal working)</topic><topic>Simulation</topic><topic>Software</topic><topic>Spectra</topic><topic>spectral convolutional neural networks</topic><topic>spectral deep learning</topic><topic>spectral X-ray CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busi, Matteo</creatorcontrib><creatorcontrib>Kehl, Christian</creatorcontrib><creatorcontrib>Frisvad, Jeppe R</creatorcontrib><creatorcontrib>Olsen, Ulrik L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busi, Matteo</au><au>Kehl, Christian</au><au>Frisvad, Jeppe R</au><au>Olsen, Ulrik L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><spage>77</spage><pages>77-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35324632</pmid><doi>10.3390/jimaging8030077</doi><orcidid>https://orcid.org/0000-0001-8195-7477</orcidid><orcidid>https://orcid.org/0000-0002-0603-3669</orcidid><orcidid>https://orcid.org/0000-0003-4200-1450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-433X |
ispartof | Journal of imaging, 2022-03, Vol.8 (3), p.77 |
issn | 2313-433X 2313-433X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Algorithms Attenuation coefficients Channels Computed tomography Deep learning Energy Energy resolution Image reconstruction metal artifact reduction Metals Methods Noise non-destructive evaluation Nondestructive testing Photons Reduction (metal working) Simulation Software Spectra spectral convolutional neural networks spectral deep learning spectral X-ray CT |
title | Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Artifact%20Reduction%20in%20Spectral%20X-ray%20CT%20Using%20Spectral%20Deep%20Learning&rft.jtitle=Journal%20of%20imaging&rft.au=Busi,%20Matteo&rft.date=2022-03-17&rft.volume=8&rft.issue=3&rft.spage=77&rft.pages=77-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging8030077&rft_dat=%3Cproquest_doaj_%3E2644010662%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642425915&rft_id=info:pmid/35324632&rfr_iscdi=true |