Loading…

Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning

Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of imaging 2022-03, Vol.8 (3), p.77
Main Authors: Busi, Matteo, Kehl, Christian, Frisvad, Jeppe R, Olsen, Ulrik L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663
cites cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663
container_end_page
container_issue 3
container_start_page 77
container_title Journal of imaging
container_volume 8
creator Busi, Matteo
Kehl, Christian
Frisvad, Jeppe R
Olsen, Ulrik L
description Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.
doi_str_mv 10.3390/jimaging8030077
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645</doaj_id><sourcerecordid>2644010662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</originalsourceid><addsrcrecordid>eNpdUU1r3DAUFKUlCUnOuRVDL7040ffHpRC2TZuypdAmkJuQpeetF6-1lexA_n3lbJqvg5CYN5o38x5CJwSfMmbw2brbuFU3rDRmGCv1Bh1QRljNGbt5--y9j45zXmOMiaHlmD20zwSjXDJ6gL7_gNH11Xkau9b5sfoFYfJjF4eqG6rfW_BjKuWbOrm7anFVXefS7wn_DLCtluDSUOAj9K51fYbjh_sQXV98uVp8q5c_v14uzpe151qNtW9AKkUCV4Qw7mTQTBvKiWo8C22xyAw1JBghQuuLUWggCKCi8cJoJyU7RJc73RDd2m5TmUK6s9F19h6IaWVdieN7sERjTZR0ymHBdUOdDkRr7T2XHksuitanndZ2ajYQPAxzrheiLytD98eu4q3VRhDJZzMfHwRS_DtBHu2myx763g0Qp2yp5BwTLCUt1A-vqOs4paGMamZRToUhs6OzHcunmHOC9tEMwXZeu3219vLj_fMMj_z_S2b_AFSZp9g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642425915</pqid></control><display><type>article</type><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</creator><creatorcontrib>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</creatorcontrib><description>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</description><identifier>ISSN: 2313-433X</identifier><identifier>EISSN: 2313-433X</identifier><identifier>DOI: 10.3390/jimaging8030077</identifier><identifier>PMID: 35324632</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Attenuation coefficients ; Channels ; Computed tomography ; Deep learning ; Energy ; Energy resolution ; Image reconstruction ; metal artifact reduction ; Metals ; Methods ; Noise ; non-destructive evaluation ; Nondestructive testing ; Photons ; Reduction (metal working) ; Simulation ; Software ; Spectra ; spectral convolutional neural networks ; spectral deep learning ; spectral X-ray CT</subject><ispartof>Journal of imaging, 2022-03, Vol.8 (3), p.77</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</citedby><cites>FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</cites><orcidid>0000-0001-8195-7477 ; 0000-0002-0603-3669 ; 0000-0003-4200-1450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642425915/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642425915?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35324632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busi, Matteo</creatorcontrib><creatorcontrib>Kehl, Christian</creatorcontrib><creatorcontrib>Frisvad, Jeppe R</creatorcontrib><creatorcontrib>Olsen, Ulrik L</creatorcontrib><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><title>Journal of imaging</title><addtitle>J Imaging</addtitle><description>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</description><subject>Algorithms</subject><subject>Attenuation coefficients</subject><subject>Channels</subject><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Energy</subject><subject>Energy resolution</subject><subject>Image reconstruction</subject><subject>metal artifact reduction</subject><subject>Metals</subject><subject>Methods</subject><subject>Noise</subject><subject>non-destructive evaluation</subject><subject>Nondestructive testing</subject><subject>Photons</subject><subject>Reduction (metal working)</subject><subject>Simulation</subject><subject>Software</subject><subject>Spectra</subject><subject>spectral convolutional neural networks</subject><subject>spectral deep learning</subject><subject>spectral X-ray CT</subject><issn>2313-433X</issn><issn>2313-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1r3DAUFKUlCUnOuRVDL7040ffHpRC2TZuypdAmkJuQpeetF6-1lexA_n3lbJqvg5CYN5o38x5CJwSfMmbw2brbuFU3rDRmGCv1Bh1QRljNGbt5--y9j45zXmOMiaHlmD20zwSjXDJ6gL7_gNH11Xkau9b5sfoFYfJjF4eqG6rfW_BjKuWbOrm7anFVXefS7wn_DLCtluDSUOAj9K51fYbjh_sQXV98uVp8q5c_v14uzpe151qNtW9AKkUCV4Qw7mTQTBvKiWo8C22xyAw1JBghQuuLUWggCKCi8cJoJyU7RJc73RDd2m5TmUK6s9F19h6IaWVdieN7sERjTZR0ymHBdUOdDkRr7T2XHksuitanndZ2ajYQPAxzrheiLytD98eu4q3VRhDJZzMfHwRS_DtBHu2myx763g0Qp2yp5BwTLCUt1A-vqOs4paGMamZRToUhs6OzHcunmHOC9tEMwXZeu3219vLj_fMMj_z_S2b_AFSZp9g</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Busi, Matteo</creator><creator>Kehl, Christian</creator><creator>Frisvad, Jeppe R</creator><creator>Olsen, Ulrik L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8195-7477</orcidid><orcidid>https://orcid.org/0000-0002-0603-3669</orcidid><orcidid>https://orcid.org/0000-0003-4200-1450</orcidid></search><sort><creationdate>20220317</creationdate><title>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</title><author>Busi, Matteo ; Kehl, Christian ; Frisvad, Jeppe R ; Olsen, Ulrik L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Attenuation coefficients</topic><topic>Channels</topic><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Energy</topic><topic>Energy resolution</topic><topic>Image reconstruction</topic><topic>metal artifact reduction</topic><topic>Metals</topic><topic>Methods</topic><topic>Noise</topic><topic>non-destructive evaluation</topic><topic>Nondestructive testing</topic><topic>Photons</topic><topic>Reduction (metal working)</topic><topic>Simulation</topic><topic>Software</topic><topic>Spectra</topic><topic>spectral convolutional neural networks</topic><topic>spectral deep learning</topic><topic>spectral X-ray CT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busi, Matteo</creatorcontrib><creatorcontrib>Kehl, Christian</creatorcontrib><creatorcontrib>Frisvad, Jeppe R</creatorcontrib><creatorcontrib>Olsen, Ulrik L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busi, Matteo</au><au>Kehl, Christian</au><au>Frisvad, Jeppe R</au><au>Olsen, Ulrik L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning</atitle><jtitle>Journal of imaging</jtitle><addtitle>J Imaging</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><spage>77</spage><pages>77-</pages><issn>2313-433X</issn><eissn>2313-433X</eissn><abstract>Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35324632</pmid><doi>10.3390/jimaging8030077</doi><orcidid>https://orcid.org/0000-0001-8195-7477</orcidid><orcidid>https://orcid.org/0000-0002-0603-3669</orcidid><orcidid>https://orcid.org/0000-0003-4200-1450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-433X
ispartof Journal of imaging, 2022-03, Vol.8 (3), p.77
issn 2313-433X
2313-433X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1808176a7a0548b2a8d1888cc46c0645
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Attenuation coefficients
Channels
Computed tomography
Deep learning
Energy
Energy resolution
Image reconstruction
metal artifact reduction
Metals
Methods
Noise
non-destructive evaluation
Nondestructive testing
Photons
Reduction (metal working)
Simulation
Software
Spectra
spectral convolutional neural networks
spectral deep learning
spectral X-ray CT
title Metal Artifact Reduction in Spectral X-ray CT Using Spectral Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Artifact%20Reduction%20in%20Spectral%20X-ray%20CT%20Using%20Spectral%20Deep%20Learning&rft.jtitle=Journal%20of%20imaging&rft.au=Busi,%20Matteo&rft.date=2022-03-17&rft.volume=8&rft.issue=3&rft.spage=77&rft.pages=77-&rft.issn=2313-433X&rft.eissn=2313-433X&rft_id=info:doi/10.3390/jimaging8030077&rft_dat=%3Cproquest_doaj_%3E2644010662%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-cbe6771d471134a6d83892417bc3df92039291d955dfc353ebed5e25bc598a663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642425915&rft_id=info:pmid/35324632&rfr_iscdi=true