Loading…
Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study
Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fec...
Saved in:
Published in: | Signal transduction and targeted therapy 2023-09, Vol.8 (1), p.326-326, Article 326 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33 |
container_end_page | 326 |
container_issue | 1 |
container_start_page | 326 |
container_title | Signal transduction and targeted therapy |
container_volume | 8 |
creator | Wu, Junqi Li, Chongwu Gao, Peigen Zhang, Chenhong Zhang, Pei Zhang, Lei Dai, Chenyang Zhang, Kunpeng Shi, Bowen Liu, Mengyang Zheng, Junmeng Pan, Bo Chen, Zhan Zhang, Chao Liao, Wanqing Pan, Weihua Fang, Wenjie Chen, Chang |
description | Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI.
Bacteroides uniformis
, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs. |
doi_str_mv | 10.1038/s41392-023-01515-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1811a7093f304bb5b94eadcea3acfc2e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1811a7093f304bb5b94eadcea3acfc2e</doaj_id><sourcerecordid>2859394542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EotXQP8DKEhs2AT-TmA1CFY-RKrGBtXXjOKkHjz3YTqX59zhNBZQFKz_uuZ_scw9CLyl5Qwnv32ZBuWINYbwhVFLZ8CfokhGpGt5y-fSv_QW6yvlACKEt7zopnqML3rWSKckvkduHYnNxATw-OpPi4GIB7F34kXGJGLyPc4Kp4FxgcN6VM64nm7BfwoxLgpBPHkKB4mJ4hwGfUswna4q7s9jE25jW1mU8v0DPJvDZXj2sO_T908dv11-am6-f99cfbhojaV-arrcCiBSMK9qOEzPUUCUmNdlhkGBJy4lVo-nlBKobu14pSccRlLCs6wfL-Q7tN-4Y4aBPyR0hnXUEp-8vYpo1pOKMt5r2lEJHFJ84ERU_VAqMxgIHMxlmK-v9xjotw9HWSqgf9o-gjyvB3eo53mlKREdbSivh9QMhxZ9LdVofXTbWV8tsXLJmfUsEIb1kVfrqH-khLqkOZlVJxZVYXdkhtqnqrHJOdvr9Gkr0mgy9JUPXZOj7ZOjVE7415SoOs01_0P_p-gUbg7zn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859394542</pqid></control><display><type>article</type><title>Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Junqi ; Li, Chongwu ; Gao, Peigen ; Zhang, Chenhong ; Zhang, Pei ; Zhang, Lei ; Dai, Chenyang ; Zhang, Kunpeng ; Shi, Bowen ; Liu, Mengyang ; Zheng, Junmeng ; Pan, Bo ; Chen, Zhan ; Zhang, Chao ; Liao, Wanqing ; Pan, Weihua ; Fang, Wenjie ; Chen, Chang</creator><creatorcontrib>Wu, Junqi ; Li, Chongwu ; Gao, Peigen ; Zhang, Chenhong ; Zhang, Pei ; Zhang, Lei ; Dai, Chenyang ; Zhang, Kunpeng ; Shi, Bowen ; Liu, Mengyang ; Zheng, Junmeng ; Pan, Bo ; Chen, Zhan ; Zhang, Chao ; Liao, Wanqing ; Pan, Weihua ; Fang, Wenjie ; Chen, Chang</creatorcontrib><description>Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI.
Bacteroides uniformis
, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs.</description><identifier>ISSN: 2059-3635</identifier><identifier>ISSN: 2095-9907</identifier><identifier>EISSN: 2059-3635</identifier><identifier>DOI: 10.1038/s41392-023-01515-3</identifier><identifier>PMID: 37652953</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326 ; 692/308/575 ; 692/699/1785 ; Allografts ; Antimicrobial peptides ; Cancer Research ; Cell Biology ; Cohort analysis ; Cytokines ; Digestive system ; Feces ; Gastrointestinal tract ; Graft rejection ; Inflammation ; Interleukin 12 ; Internal Medicine ; Intestinal microflora ; Lung transplants ; Mannose ; Medicine ; Medicine & Public Health ; Metabolites ; Metagenomics ; Microbiomes ; Microbiota ; Oncology ; Pathology ; Probiotics ; Transplantation</subject><ispartof>Signal transduction and targeted therapy, 2023-09, Vol.8 (1), p.326-326, Article 326</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>West China Hospital, Sichuan University 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33</citedby><cites>FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33</cites><orcidid>0000-0002-9981-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2859394542?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2859394542?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791,74182,74896</link.rule.ids></links><search><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Li, Chongwu</creatorcontrib><creatorcontrib>Gao, Peigen</creatorcontrib><creatorcontrib>Zhang, Chenhong</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Dai, Chenyang</creatorcontrib><creatorcontrib>Zhang, Kunpeng</creatorcontrib><creatorcontrib>Shi, Bowen</creatorcontrib><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Zheng, Junmeng</creatorcontrib><creatorcontrib>Pan, Bo</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Liao, Wanqing</creatorcontrib><creatorcontrib>Pan, Weihua</creatorcontrib><creatorcontrib>Fang, Wenjie</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><title>Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study</title><title>Signal transduction and targeted therapy</title><addtitle>Sig Transduct Target Ther</addtitle><description>Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI.
Bacteroides uniformis
, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs.</description><subject>631/326</subject><subject>692/308/575</subject><subject>692/699/1785</subject><subject>Allografts</subject><subject>Antimicrobial peptides</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cohort analysis</subject><subject>Cytokines</subject><subject>Digestive system</subject><subject>Feces</subject><subject>Gastrointestinal tract</subject><subject>Graft rejection</subject><subject>Inflammation</subject><subject>Interleukin 12</subject><subject>Internal Medicine</subject><subject>Intestinal microflora</subject><subject>Lung transplants</subject><subject>Mannose</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolites</subject><subject>Metagenomics</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Probiotics</subject><subject>Transplantation</subject><issn>2059-3635</issn><issn>2095-9907</issn><issn>2059-3635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhS0EotXQP8DKEhs2AT-TmA1CFY-RKrGBtXXjOKkHjz3YTqX59zhNBZQFKz_uuZ_scw9CLyl5Qwnv32ZBuWINYbwhVFLZ8CfokhGpGt5y-fSv_QW6yvlACKEt7zopnqML3rWSKckvkduHYnNxATw-OpPi4GIB7F34kXGJGLyPc4Kp4FxgcN6VM64nm7BfwoxLgpBPHkKB4mJ4hwGfUswna4q7s9jE25jW1mU8v0DPJvDZXj2sO_T908dv11-am6-f99cfbhojaV-arrcCiBSMK9qOEzPUUCUmNdlhkGBJy4lVo-nlBKobu14pSccRlLCs6wfL-Q7tN-4Y4aBPyR0hnXUEp-8vYpo1pOKMt5r2lEJHFJ84ERU_VAqMxgIHMxlmK-v9xjotw9HWSqgf9o-gjyvB3eo53mlKREdbSivh9QMhxZ9LdVofXTbWV8tsXLJmfUsEIb1kVfrqH-khLqkOZlVJxZVYXdkhtqnqrHJOdvr9Gkr0mgy9JUPXZOj7ZOjVE7415SoOs01_0P_p-gUbg7zn</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wu, Junqi</creator><creator>Li, Chongwu</creator><creator>Gao, Peigen</creator><creator>Zhang, Chenhong</creator><creator>Zhang, Pei</creator><creator>Zhang, Lei</creator><creator>Dai, Chenyang</creator><creator>Zhang, Kunpeng</creator><creator>Shi, Bowen</creator><creator>Liu, Mengyang</creator><creator>Zheng, Junmeng</creator><creator>Pan, Bo</creator><creator>Chen, Zhan</creator><creator>Zhang, Chao</creator><creator>Liao, Wanqing</creator><creator>Pan, Weihua</creator><creator>Fang, Wenjie</creator><creator>Chen, Chang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid></search><sort><creationdate>20230901</creationdate><title>Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study</title><author>Wu, Junqi ; Li, Chongwu ; Gao, Peigen ; Zhang, Chenhong ; Zhang, Pei ; Zhang, Lei ; Dai, Chenyang ; Zhang, Kunpeng ; Shi, Bowen ; Liu, Mengyang ; Zheng, Junmeng ; Pan, Bo ; Chen, Zhan ; Zhang, Chao ; Liao, Wanqing ; Pan, Weihua ; Fang, Wenjie ; Chen, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/326</topic><topic>692/308/575</topic><topic>692/699/1785</topic><topic>Allografts</topic><topic>Antimicrobial peptides</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cohort analysis</topic><topic>Cytokines</topic><topic>Digestive system</topic><topic>Feces</topic><topic>Gastrointestinal tract</topic><topic>Graft rejection</topic><topic>Inflammation</topic><topic>Interleukin 12</topic><topic>Internal Medicine</topic><topic>Intestinal microflora</topic><topic>Lung transplants</topic><topic>Mannose</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolites</topic><topic>Metagenomics</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Probiotics</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Li, Chongwu</creatorcontrib><creatorcontrib>Gao, Peigen</creatorcontrib><creatorcontrib>Zhang, Chenhong</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Dai, Chenyang</creatorcontrib><creatorcontrib>Zhang, Kunpeng</creatorcontrib><creatorcontrib>Shi, Bowen</creatorcontrib><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Zheng, Junmeng</creatorcontrib><creatorcontrib>Pan, Bo</creatorcontrib><creatorcontrib>Chen, Zhan</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Liao, Wanqing</creatorcontrib><creatorcontrib>Pan, Weihua</creatorcontrib><creatorcontrib>Fang, Wenjie</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Signal transduction and targeted therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Junqi</au><au>Li, Chongwu</au><au>Gao, Peigen</au><au>Zhang, Chenhong</au><au>Zhang, Pei</au><au>Zhang, Lei</au><au>Dai, Chenyang</au><au>Zhang, Kunpeng</au><au>Shi, Bowen</au><au>Liu, Mengyang</au><au>Zheng, Junmeng</au><au>Pan, Bo</au><au>Chen, Zhan</au><au>Zhang, Chao</au><au>Liao, Wanqing</au><au>Pan, Weihua</au><au>Fang, Wenjie</au><au>Chen, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study</atitle><jtitle>Signal transduction and targeted therapy</jtitle><stitle>Sig Transduct Target Ther</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>326</spage><epage>326</epage><pages>326-326</pages><artnum>326</artnum><issn>2059-3635</issn><issn>2095-9907</issn><eissn>2059-3635</eissn><abstract>Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI.
Bacteroides uniformis
, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37652953</pmid><doi>10.1038/s41392-023-01515-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9981-3110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-3635 |
ispartof | Signal transduction and targeted therapy, 2023-09, Vol.8 (1), p.326-326, Article 326 |
issn | 2059-3635 2095-9907 2059-3635 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1811a7093f304bb5b94eadcea3acfc2e |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/326 692/308/575 692/699/1785 Allografts Antimicrobial peptides Cancer Research Cell Biology Cohort analysis Cytokines Digestive system Feces Gastrointestinal tract Graft rejection Inflammation Interleukin 12 Internal Medicine Intestinal microflora Lung transplants Mannose Medicine Medicine & Public Health Metabolites Metagenomics Microbiomes Microbiota Oncology Pathology Probiotics Transplantation |
title | Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intestinal%20microbiota%20links%20to%20allograft%20stability%20after%20lung%20transplantation:%20a%20prospective%20cohort%20study&rft.jtitle=Signal%20transduction%20and%20targeted%20therapy&rft.au=Wu,%20Junqi&rft.date=2023-09-01&rft.volume=8&rft.issue=1&rft.spage=326&rft.epage=326&rft.pages=326-326&rft.artnum=326&rft.issn=2059-3635&rft.eissn=2059-3635&rft_id=info:doi/10.1038/s41392-023-01515-3&rft_dat=%3Cproquest_doaj_%3E2859394542%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-78e4a05423916df2c1c194f9febb5ae0630e9dc85fa97d789951dda94e278be33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859394542&rft_id=info:pmid/37652953&rfr_iscdi=true |