Loading…

Bio-Oriented Synthesis of Novel (S)-Flurbiprofen Clubbed Hydrazone Schiff’s Bases for Diabetic Management: In Vitro and In Silico Studies

A new series of (S)-flurbiprofen derivatives 4a–4p and 5a–5n were synthesized with different aromatic or aliphatic aldehydes and ketones to produce Schiff’s bases and their structures were confirmed through HR-ESI-MS, 1H, and 13C-NMR spectroscopy. The α-glucosidase inhibitory activities of the newly...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-05, Vol.15 (6), p.672
Main Authors: Alam, Aftab, Ali, Mumtaz, Rehman, Najeeb Ur, Ullah, Saeed, Halim, Sobia Ahsan, Latif, Abdul, Zainab, Khan, Ajmal, Ullah, Obaid, Ahmad, Shujaat, Al-Harrasi, Ahmed, Ahmad, Manzoor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new series of (S)-flurbiprofen derivatives 4a–4p and 5a–5n were synthesized with different aromatic or aliphatic aldehydes and ketones to produce Schiff’s bases and their structures were confirmed through HR-ESI-MS, 1H, and 13C-NMR spectroscopy. The α-glucosidase inhibitory activities of the newly synthesized compounds were scrutinized, in which six compounds 5k, 4h, 5h, 4d, 4b, and 5i showed potent inhibition in the range of 0.93 to 10.26 µM, respectively, whereas fifteen compounds 4c, 4g, 4i, 4j, 4l, 4m, 4o, 4p, 5c, 5d, 5j, 5l, 5m, 5n and 1 exhibited significant inhibitory activity with IC50 in range of = 11.42 to 48.39 µM. In addition, compounds 5g, 5f, 4k, 4n, and 4f displayed moderate-to-low activities. The modes of binding of all the active compounds were determined through the molecular docking approach, which revealed that two residues, specifically Glu277 and His351 are important in the stabilization of the active compounds in the active site of α-glucosidase. Furthermore, these compounds block the active site with high binding energies (−7.51 to −3.36 kcal/mol) thereby inhibiting the function of the enzyme.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph15060672