Loading…

Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis

Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP)...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2020-03, Vol.30 (11), p.3875-3888.e3
Main Authors: Kinoshita, Noriyuki, Hashimoto, Yutaka, Yasue, Naoko, Suzuki, Makoto, Cristea, Ileana M., Ueno, Naoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83
cites cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83
container_end_page 3888.e3
container_issue 11
container_start_page 3875
container_title Cell reports (Cambridge)
container_volume 30
creator Kinoshita, Noriyuki
Hashimoto, Yutaka
Yasue, Naoko
Suzuki, Makoto
Cristea, Ileana M.
Ueno, Naoto
description Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways. [Display omitted] •Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.
doi_str_mv 10.1016/j.celrep.2020.02.074
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_182e4c3544204c068af6f42550904ed3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720302436</els_id><doaj_id>oai_doaj_org_article_182e4c3544204c068af6f42550904ed3</doaj_id><sourcerecordid>2379019717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhCIVqX_ACEfuWxqO-M8Lkio2i0rFYHacrYce5x4ySaL7RTtlV-Ol5SKE77MjP09NP6y7C2jOaOsvNrlGgePh5xTTnPKc1rBi-ycc8ZWjEP18p_-LLsMYUfTKSljDbzOzgrO6kqI8jz79Rl1r0an1UDuo8cQyB1286AiBrI-uNjj4NLbgwthRrIdI3bexSNRo0kEZ-144sTeT3PXp4pkc7O5u1r775zcu25Ugxs78lXF_qc6EjP707jet_44dZi4LrzJXlk1BLx8qhfZt8364frT6vbLzfb64-1KC6BxhW1VG64EqgIanTrbomobwYSAwtia1cAqU0FbCqqAA2BtGeiyRVuaNBQX2XbRNZPayYN3e-WPclJO_rmYfCeVj04PKFnNEXQhADgFTcta2dICF4I2FNAUSev9onXw048ZQ5R7F1IkgxpxmoPkRdVQ1lSsSlBYoNpPIXi0z9aMylOYcieXMOUpTEm5TGEm2rsnh7ndo3km_Y0uAT4sAEx_9ujQy6AdjhqN86hjWsr93-E33Jyyrg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379019717</pqid></control><display><type>article</type><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</creator><creatorcontrib>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</creatorcontrib><description>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways. [Display omitted] •Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.02.074</identifier><identifier>PMID: 32187556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomechanical Phenomena ; cell junction ; Embryonic Development ; Epithelium - physiology ; ERK2 ; FGF receptor ; Gastrulation ; Intercellular Junctions - metabolism ; MAPK1 ; mechanobiology ; mechanosensing ; Mitogen-Activated Protein Kinase 1 - metabolism ; Phosphorylation ; Receptor, Fibroblast Growth Factor, Type 1 - metabolism ; Signal Transduction ; stiffness ; Stress, Mechanical ; Xenopus laevis ; Xenopus laevis - embryology ; Xenopus laevis - physiology</subject><ispartof>Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3875-3888.e3</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</citedby><cites>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32187556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinoshita, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Yutaka</creatorcontrib><creatorcontrib>Yasue, Naoko</creatorcontrib><creatorcontrib>Suzuki, Makoto</creatorcontrib><creatorcontrib>Cristea, Ileana M.</creatorcontrib><creatorcontrib>Ueno, Naoto</creatorcontrib><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways. [Display omitted] •Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>cell junction</subject><subject>Embryonic Development</subject><subject>Epithelium - physiology</subject><subject>ERK2</subject><subject>FGF receptor</subject><subject>Gastrulation</subject><subject>Intercellular Junctions - metabolism</subject><subject>MAPK1</subject><subject>mechanobiology</subject><subject>mechanosensing</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Phosphorylation</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</subject><subject>Signal Transduction</subject><subject>stiffness</subject><subject>Stress, Mechanical</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - physiology</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UUtv1DAQjhCIVqX_ACEfuWxqO-M8Lkio2i0rFYHacrYce5x4ySaL7RTtlV-Ol5SKE77MjP09NP6y7C2jOaOsvNrlGgePh5xTTnPKc1rBi-ycc8ZWjEP18p_-LLsMYUfTKSljDbzOzgrO6kqI8jz79Rl1r0an1UDuo8cQyB1286AiBrI-uNjj4NLbgwthRrIdI3bexSNRo0kEZ-144sTeT3PXp4pkc7O5u1r775zcu25Ugxs78lXF_qc6EjP707jet_44dZi4LrzJXlk1BLx8qhfZt8364frT6vbLzfb64-1KC6BxhW1VG64EqgIanTrbomobwYSAwtia1cAqU0FbCqqAA2BtGeiyRVuaNBQX2XbRNZPayYN3e-WPclJO_rmYfCeVj04PKFnNEXQhADgFTcta2dICF4I2FNAUSev9onXw048ZQ5R7F1IkgxpxmoPkRdVQ1lSsSlBYoNpPIXi0z9aMylOYcieXMOUpTEm5TGEm2rsnh7ndo3km_Y0uAT4sAEx_9ujQy6AdjhqN86hjWsr93-E33Jyyrg</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Kinoshita, Noriyuki</creator><creator>Hashimoto, Yutaka</creator><creator>Yasue, Naoko</creator><creator>Suzuki, Makoto</creator><creator>Cristea, Ileana M.</creator><creator>Ueno, Naoto</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20200317</creationdate><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><author>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>cell junction</topic><topic>Embryonic Development</topic><topic>Epithelium - physiology</topic><topic>ERK2</topic><topic>FGF receptor</topic><topic>Gastrulation</topic><topic>Intercellular Junctions - metabolism</topic><topic>MAPK1</topic><topic>mechanobiology</topic><topic>mechanosensing</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Phosphorylation</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</topic><topic>Signal Transduction</topic><topic>stiffness</topic><topic>Stress, Mechanical</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Yutaka</creatorcontrib><creatorcontrib>Yasue, Naoko</creatorcontrib><creatorcontrib>Suzuki, Makoto</creatorcontrib><creatorcontrib>Cristea, Ileana M.</creatorcontrib><creatorcontrib>Ueno, Naoto</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Noriyuki</au><au>Hashimoto, Yutaka</au><au>Yasue, Naoko</au><au>Suzuki, Makoto</au><au>Cristea, Ileana M.</au><au>Ueno, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>3875</spage><epage>3888.e3</epage><pages>3875-3888.e3</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways. [Display omitted] •Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32187556</pmid><doi>10.1016/j.celrep.2020.02.074</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3875-3888.e3
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_182e4c3544204c068af6f42550904ed3
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Biomechanical Phenomena
cell junction
Embryonic Development
Epithelium - physiology
ERK2
FGF receptor
Gastrulation
Intercellular Junctions - metabolism
MAPK1
mechanobiology
mechanosensing
Mitogen-Activated Protein Kinase 1 - metabolism
Phosphorylation
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Signal Transduction
stiffness
Stress, Mechanical
Xenopus laevis
Xenopus laevis - embryology
Xenopus laevis - physiology
title Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Stress%20Regulates%20Epithelial%20Tissue%20Integrity%20and%20Stiffness%20through%20the%20FGFR/Erk2%20Signaling%20Pathway%20during%20Embryogenesis&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Kinoshita,%20Noriyuki&rft.date=2020-03-17&rft.volume=30&rft.issue=11&rft.spage=3875&rft.epage=3888.e3&rft.pages=3875-3888.e3&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.02.074&rft_dat=%3Cproquest_doaj_%3E2379019717%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379019717&rft_id=info:pmid/32187556&rfr_iscdi=true