Loading…
Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis
Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP)...
Saved in:
Published in: | Cell reports (Cambridge) 2020-03, Vol.30 (11), p.3875-3888.e3 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83 |
container_end_page | 3888.e3 |
container_issue | 11 |
container_start_page | 3875 |
container_title | Cell reports (Cambridge) |
container_volume | 30 |
creator | Kinoshita, Noriyuki Hashimoto, Yutaka Yasue, Naoko Suzuki, Makoto Cristea, Ileana M. Ueno, Naoto |
description | Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.
[Display omitted]
•Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation
Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation. |
doi_str_mv | 10.1016/j.celrep.2020.02.074 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_182e4c3544204c068af6f42550904ed3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720302436</els_id><doaj_id>oai_doaj_org_article_182e4c3544204c068af6f42550904ed3</doaj_id><sourcerecordid>2379019717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhCIVqX_ACEfuWxqO-M8Lkio2i0rFYHacrYce5x4ySaL7RTtlV-Ol5SKE77MjP09NP6y7C2jOaOsvNrlGgePh5xTTnPKc1rBi-ycc8ZWjEP18p_-LLsMYUfTKSljDbzOzgrO6kqI8jz79Rl1r0an1UDuo8cQyB1286AiBrI-uNjj4NLbgwthRrIdI3bexSNRo0kEZ-144sTeT3PXp4pkc7O5u1r775zcu25Ugxs78lXF_qc6EjP707jet_44dZi4LrzJXlk1BLx8qhfZt8364frT6vbLzfb64-1KC6BxhW1VG64EqgIanTrbomobwYSAwtia1cAqU0FbCqqAA2BtGeiyRVuaNBQX2XbRNZPayYN3e-WPclJO_rmYfCeVj04PKFnNEXQhADgFTcta2dICF4I2FNAUSev9onXw048ZQ5R7F1IkgxpxmoPkRdVQ1lSsSlBYoNpPIXi0z9aMylOYcieXMOUpTEm5TGEm2rsnh7ndo3km_Y0uAT4sAEx_9ujQy6AdjhqN86hjWsr93-E33Jyyrg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379019717</pqid></control><display><type>article</type><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</creator><creatorcontrib>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</creatorcontrib><description>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.
[Display omitted]
•Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation
Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.02.074</identifier><identifier>PMID: 32187556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomechanical Phenomena ; cell junction ; Embryonic Development ; Epithelium - physiology ; ERK2 ; FGF receptor ; Gastrulation ; Intercellular Junctions - metabolism ; MAPK1 ; mechanobiology ; mechanosensing ; Mitogen-Activated Protein Kinase 1 - metabolism ; Phosphorylation ; Receptor, Fibroblast Growth Factor, Type 1 - metabolism ; Signal Transduction ; stiffness ; Stress, Mechanical ; Xenopus laevis ; Xenopus laevis - embryology ; Xenopus laevis - physiology</subject><ispartof>Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3875-3888.e3</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</citedby><cites>FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32187556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinoshita, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Yutaka</creatorcontrib><creatorcontrib>Yasue, Naoko</creatorcontrib><creatorcontrib>Suzuki, Makoto</creatorcontrib><creatorcontrib>Cristea, Ileana M.</creatorcontrib><creatorcontrib>Ueno, Naoto</creatorcontrib><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.
[Display omitted]
•Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation
Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>cell junction</subject><subject>Embryonic Development</subject><subject>Epithelium - physiology</subject><subject>ERK2</subject><subject>FGF receptor</subject><subject>Gastrulation</subject><subject>Intercellular Junctions - metabolism</subject><subject>MAPK1</subject><subject>mechanobiology</subject><subject>mechanosensing</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Phosphorylation</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</subject><subject>Signal Transduction</subject><subject>stiffness</subject><subject>Stress, Mechanical</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - physiology</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UUtv1DAQjhCIVqX_ACEfuWxqO-M8Lkio2i0rFYHacrYce5x4ySaL7RTtlV-Ol5SKE77MjP09NP6y7C2jOaOsvNrlGgePh5xTTnPKc1rBi-ycc8ZWjEP18p_-LLsMYUfTKSljDbzOzgrO6kqI8jz79Rl1r0an1UDuo8cQyB1286AiBrI-uNjj4NLbgwthRrIdI3bexSNRo0kEZ-144sTeT3PXp4pkc7O5u1r775zcu25Ugxs78lXF_qc6EjP707jet_44dZi4LrzJXlk1BLx8qhfZt8364frT6vbLzfb64-1KC6BxhW1VG64EqgIanTrbomobwYSAwtia1cAqU0FbCqqAA2BtGeiyRVuaNBQX2XbRNZPayYN3e-WPclJO_rmYfCeVj04PKFnNEXQhADgFTcta2dICF4I2FNAUSev9onXw048ZQ5R7F1IkgxpxmoPkRdVQ1lSsSlBYoNpPIXi0z9aMylOYcieXMOUpTEm5TGEm2rsnh7ndo3km_Y0uAT4sAEx_9ujQy6AdjhqN86hjWsr93-E33Jyyrg</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Kinoshita, Noriyuki</creator><creator>Hashimoto, Yutaka</creator><creator>Yasue, Naoko</creator><creator>Suzuki, Makoto</creator><creator>Cristea, Ileana M.</creator><creator>Ueno, Naoto</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20200317</creationdate><title>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</title><author>Kinoshita, Noriyuki ; Hashimoto, Yutaka ; Yasue, Naoko ; Suzuki, Makoto ; Cristea, Ileana M. ; Ueno, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>cell junction</topic><topic>Embryonic Development</topic><topic>Epithelium - physiology</topic><topic>ERK2</topic><topic>FGF receptor</topic><topic>Gastrulation</topic><topic>Intercellular Junctions - metabolism</topic><topic>MAPK1</topic><topic>mechanobiology</topic><topic>mechanosensing</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Phosphorylation</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</topic><topic>Signal Transduction</topic><topic>stiffness</topic><topic>Stress, Mechanical</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Noriyuki</creatorcontrib><creatorcontrib>Hashimoto, Yutaka</creatorcontrib><creatorcontrib>Yasue, Naoko</creatorcontrib><creatorcontrib>Suzuki, Makoto</creatorcontrib><creatorcontrib>Cristea, Ileana M.</creatorcontrib><creatorcontrib>Ueno, Naoto</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Noriyuki</au><au>Hashimoto, Yutaka</au><au>Yasue, Naoko</au><au>Suzuki, Makoto</au><au>Cristea, Ileana M.</au><au>Ueno, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>3875</spage><epage>3888.e3</epage><pages>3875-3888.e3</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.
[Display omitted]
•Stretching of the ectodermal tissue of the Xenopus embryo activates Erk2•The stretch force phosphorylates Erk2 through FGFR in a ligand-independent manner•Force-induced FGFR/Erk2 signaling enhances apical junctional structures•This system increases epithelial stiffness and integrity during gastrulation
Physical forces generated by morphogenetic movements are a critical component of embryogenesis. In this study, Kinoshita et al. demonstrate that stretching of the ectodermal tissue of the Xenopus embryo activates the FGF receptor/Erk2 pathway, which in turn enhances the apical junctional structure and increases epithelial stiffness and integrity during gastrulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32187556</pmid><doi>10.1016/j.celrep.2020.02.074</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2020-03, Vol.30 (11), p.3875-3888.e3 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_182e4c3544204c068af6f42550904ed3 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Biomechanical Phenomena cell junction Embryonic Development Epithelium - physiology ERK2 FGF receptor Gastrulation Intercellular Junctions - metabolism MAPK1 mechanobiology mechanosensing Mitogen-Activated Protein Kinase 1 - metabolism Phosphorylation Receptor, Fibroblast Growth Factor, Type 1 - metabolism Signal Transduction stiffness Stress, Mechanical Xenopus laevis Xenopus laevis - embryology Xenopus laevis - physiology |
title | Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Stress%20Regulates%20Epithelial%20Tissue%20Integrity%20and%20Stiffness%20through%20the%20FGFR/Erk2%20Signaling%20Pathway%20during%20Embryogenesis&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Kinoshita,%20Noriyuki&rft.date=2020-03-17&rft.volume=30&rft.issue=11&rft.spage=3875&rft.epage=3888.e3&rft.pages=3875-3888.e3&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.02.074&rft_dat=%3Cproquest_doaj_%3E2379019717%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-eb78d2a5ea349cd2afbeab9515543df818417d74b650a4244e8f14c6bef6d4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379019717&rft_id=info:pmid/32187556&rfr_iscdi=true |